0
首頁 精品范文 通信電源論文

通信電源論文

時間:2023-01-06 23:02:53

開篇:寫作不僅是一種記錄,更是一種創造,它讓我們能夠捕捉那些稍縱即逝的靈感,將它們永久地定格在紙上。下面是小編精心整理的12篇通信電源論文,希望這些內容能成為您創作過程中的良師益友,陪伴您不斷探索和進步。

通信電源論文

第1篇

[論文摘要]:通信電源是向通信設備提供交直流電的電能源,是整個通信電信網的能量保證。通信電源系統由交流供電系統、直流供電系統和相應的保護系統構成。通信電源系統的設備多,分布廣,不僅單個電源設備的可靠性會影響系統的可靠性,電源系統的總體結構也會對自身的可靠性造成很大的影響。

一、通信電源的發展現狀

(一)供電系統的現狀

通信電源是通信系統必不可少的重要組成部分,其設計目標是安全、可靠、高效、穩定、不間斷地向通信設備提供能源。通信電源必須具備智能監控、無人值守和電池自動管理等功能,從而滿足網絡時代的需求。通信電源系統由交流配電、整流柜、直流配電和監控模塊組成。

(二)通信電源設備的更新換代

近年來,隨著技術的進步,特別是功率器的更新換代,新型電磁材料的不斷使用,功率變換技術的不斷改進,控制方法的不斷進步,以及相關學科的技術不斷融合,通信電源在系統的可靠性、穩定性,電磁兼容性,消除網側電流諧波、提高電能利用率、降低損耗、提高系統的動態性能等等方面都取得長足的進步。

(三)現行通信電源的電路模型和控制技術

目前通信電源的變換電路拓撲結構主要采用雙單端電路,半橋電路和全橋電路,各有優缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。

二、通信電源發展趨勢

(一)開關器件的發展趨勢

電源技術的精髓是電能變換,即利用電能變化技術將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關電源在電源技術中占有重要地位,從10kHz發展到高穩定度、大容量、小體積、開關頻率達到兆赫茲級,開關電源的發展為高頻變化提供了硬件基礎,促進了現代電源技術的繁榮和發展。

(二)通信直流電源產品的技術發展市場需求發展

在需求與技術的共同推動下,通信直流電源產品體現了如下的發展態勢:

體系架構相當長的一段時間內維持穩定。通信直流電源在相當長的時間內還是維持現有的交流配電、整流器模塊(并聯)、直流配電、監控單元、蓄電池等為主要組成部分的架構;功率變換模式也將維持現有的高頻開關模式,暫時不會出現類似從線性電源到開關電源的階躍性的變化。

功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩定,一定程度制約了整機系統的功率密度的提高比率。

更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術、通信電源技術的成熟,以及各通信直流電源設備廠家在可靠性研究上大力投入,通信直流電源產品可靠性呈不斷提高的趨勢。

按照TRIZ理論(“創造性解決問題的理論”的俄語縮略語)描述的技術系統發展進化規律,一般而言,技術的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術,開關電源技術基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內,通信直流電源產品將進入一個緩慢發展的階段,直至有一天,一種新的電源變換技術出現,通信直流電源產品就會再出現一個階躍性的發展,就像開關穩壓技術替代線性穩壓技術,給電源帶來了革命性的變化。

(三)通信用蓄電池技術研究的新進展

通信用蓄電池作為通信系統后備的能源供應手段,其研制、生產和應用技術一直備受世界各國通信行業的重視。隨著科技的發展和技術的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經進入商用化階段。這些新的蓄電池,由于其材料、結構和技術上的先進性,在性能上具有傳統的VRLA電池無可比擬的優越性。

中國1.釩電池(VanadiumRedoxBattery)。釩電池(VRB)是一種電解值可以流動的電池,目前正在逐步進入商用化階段。

2.燃料電池。燃料電池是一種化學電池,也是一種新型的發電裝置,它所需的化學原料由外部供給,如氫氧燃料電池,只要外部供給氫和氧,經過內部電極、催化劑和堿性電解液的作用,就能產生0.9V電壓的直流電能,同時產生大量的熱能.

3.電源監控系統的發展。隨著互聯網技術應用日益普及和信息處理技術的不斷發展,通信系統從以前的單機或小局域系統逐漸發展至大局域網系統或廣域網系統,大量人力、物力被投入到網絡設備的管理和維護工作上。不過通信設施所處環境越來越復雜,人煙稀少、交通不便都會增大維護的難度,這對電源設備的監控管理提出了新的需求,保護通信互聯網終端的電源設備必須具備數據處理和網絡通信能力。此時,數字化技術就表現出了傳統模擬技術無法實現的優勢,數字化技術的發展逐步表現出傳統模擬技術無法實現的優勢.

4.通信電源的環保要求。環保問題,一方面的指標是通信電源的電流諧波要符合要求,降低電源的輸入諧波,不但可以改善電源對電網的負載特性,減少給電網帶來嚴重污染的情況,還可減少對其他網絡設備的諧波干擾。另一個重要方面,是材料的可循環利用和環境的無污染,這方面需要產品滿足WEEE/ROHS指令。

在通信電源開發、生產早期,人們主要集中研究電源的輸出特性,較少考慮到電源的輸入特性。例如:傳統的在線式電源輸入AC/DC部分通常采用橋式整流濾波電路,其輸入電流呈脈沖狀,導通角約為π/3,波峰因數大于純電阻負載的1.4倍。這些諧波電流大的電源給電網帶來了嚴重的污染,使電網波形失真,實際負荷能力降低,對于三相四線制的電網來說,還很有可能因中性線電流過大而出現不安全隱患。

參考文獻:

[1]朱雄世,《通信電源的現狀與展望》.

[2]《淺析全球通信電源技術發展趨勢》.

[3]《通信直流電源發展趨勢》.

[4]孫向陽、張樹治,《國外通信用蓄電池技術研究的新進展》.

[5]《通信電源技術發展趨勢及標準研究方向》.

[6]曾瑛,《淺談通信電源》.

[7]王改娥、李克民,《談我國通信電源的發展方向》.

[8]王改娥、李克民,《我國通信電源的發展回顧與展望》.

[9]侯福平,《UPS系統在通信網絡中使用的特點及要求》.

[10]《全球通信電源技術發展呈現五大趨勢》.

第2篇

由于歷史發展的原因,當前通信電源供電體制基本上是以集中放置、集中供電方式為主,有人值守、故障維修為主。而電源的負載,如傳輸、交換、數據、移動等專業的維護方式正朝著集中監控、集中維護、少人或無人值守方向發展。通信基站是通信網絡系統中的重要組成部分,保證任何情況下的正常供電,是保證通信網絡安全運行的重要環節。為此各通信基站內均配備了較先進的電力電源供電系統,包括開關整流設備、免維護蓄電池、油機等。這些設備是保障供電穩定和連續性的重要設備,對這些設備維護的好壞,不僅影響電源系統設備的壽命和故障率,而且直接涉及通信網絡的平穩運行。

1通信電源概述

從遠古時代以來,陽光、空氣、食物和水一直是人們賴以生存的必需品,而今在科學技術飛躍發展的時代,電也已成為人們的必需品。因為有了電,我們的生活才有了歡樂。正是由于通信系統的安全優質運轉,無處不在的通信電源則是堅實的基礎和根本保障。實施集中監控管理是網絡技術發展的必然趨勢,是現代通信網的要求,也是企業減員增效的有效措施。各種電源設備要智能化、標準化,符合開放式通信協議。若電源系統不能輸出規定電流,電壓超出允許波動范圍,雜音電壓高于允許值時間并持續10s以上者均判定為系統故障。原交流系統中的電壓、頻率或波形畸變超出規定范圍持續時間大于60s者均判定為故障。為此,要保證通信電源系統的可靠性,有條件的通信部門應盡量從兩個不同的地方引入2路市電輸入,并設置2路市電電能自動倒換裝置;所用設備要選用可靠性高的高頻開關整流設備,采用模塊化、熱插拔式結構以便于更換,并合理配置備份設備。任何新技術、新設備未經充分驗證、試運行前均不得進入供電系統。供電方式要大力推廣分散供電,使用同一種直流電壓的通信設備采用兩個以上的獨立供電系統,這也是今后通信網絡容量和規模不斷擴大、各種新業引入的新要求。為了盡量縮短設備的平均故障修復時間,要經常分析運行參數,預測故障發生的時間并及時排除。還要提高技術維護水平,采用集中維護、遠程遙信、遙測維護。在實施過程中,三遙點的設置要合理,絕不是越多越好,要以可靠性、實用性為基本原則,宜簡勿繁。

2電源系統使用中應重視的問題

電源系統目前廣泛使用高頻開關電源系統設備,其智能化程度高,電池采用了免維護蓄電池,這雖給用戶帶來了許多便利,但在使用過程中還應在多方面引起注意,確保使用安全。

2.1按電源系統的使用要求和功率余量大小來分,在使用中要避免隨意增加大功率的額外設備,也不允許在滿負載狀態下長期運行。工作性質決定了電源系統幾乎是在不間斷狀態下運行的,增加大功率負載或在基本滿載狀態下工作,都會造成整流模塊出故障,嚴重時將損壞變換器。自備發電機的輸出電壓、波形、頻率和幅度應滿足電源系統對輸入電壓的要求,另外發電機的功率要大于開關電源設備的額定輸入功率,否則,將會造成電源系統設備工作異常或損壞。

2.2電池應避免大電流充放電,理論上充電時可以接受大電流,但在實際操作中應盡量避免,否則會造成電池極板膨脹變形,使得極板活性物質脫落,電池內阻增大且溫度升高,嚴重時將造成容量下降,壽命提前終止。在任何情況下都應防止電池短路或深度放電,因為電池的循環壽命和放電深度有關。放電深度越深循環壽命越短。在容量試驗或放電檢修中,通常放電達到容量的30%-50%就可以了。

2.3鉛酸蓄電池的容量和電解液的比重是線性關系,通過測量比重可以了解電池的存儲能量情況。閥控式密封蓄電池是貧液電池,且無法進行電解液比重測量,所以如何判定它的好壞,預測貯備容量已成為當今業界的一大難題。用電導儀測電池的內阻是判定蓄電池好壞的一種有參考價值的方法,但尚不能準確測定電池的好壞程度。目前,最可靠的方法還是放電法。在可靠性、經濟性、可使用性、維護性等方面綜合比較,應選用四沖程油機為原動機發電機組。四沖程油機結構簡單,采用多缸均衡做功、增壓等一系列成熟技術適合于大容量機組的要求。其噪音小、污染小、性價比高。使用中把機組產生的熱量排到室外,保證機組周圍環境濕度不超過指標要求。

3電源系統的維護與檢修

當電源系統出現故障時,應先查明原因,分清是負載還是電源系統,是主機還是電池組。雖說開關電源系統主機有故障自檢功能,但它對面而不對點,對更換配件很方便,但要維修故障點,仍需做大量的分析、檢測工作。另外如自檢部分發生故障,顯示的故障內容則可能有誤。對主機出現擊穿、斷保險或燒毀器件的故障,一定要查明原因并排除故障后才能重新啟動,否則會接連發生相同的故障。再好的設備也有壽命期,也會出現各類故障,但維護工作做得好可以延長壽命并減少故障的發生,不要因為高智能、免維護而忽略了本應進行的維護工作,預防在任何時候都是安全運行的重要保障。高頻開關電源設備在正常使用情況下,主機的維護工作量很少,主要是防塵和定期除塵。特別是氣候干燥的地區,空氣中的灰粒較多,灰塵將在機內沉積,當遇空氣潮濕時會引起主機控制紊亂造成主機工作失常,并發生不準確告警。另大量灰塵也會造成器件散熱不好。一般每季度應徹底清潔一次。其次就是在除塵時檢查各連接件和插接件有無松動和接觸不牢的情況。由于整流器對瞬時脈沖干擾不能消除,整流后的電壓仍存在干擾脈沖。蓄電池除有存儲直流電能的功能外,其等效電容量的大小與蓄能電池容量大小成正比。因此,維護檢修蓄電池的工作是非常重要的,雖說蓄電池組目前都采用了免維護電池,但這只是免除了以往的測比、配比、定時添加蒸餾水的工作。但因工作狀態對電池的影響并沒有改變,不正常工作狀態對電池造成的影響沒有變,所以蓄電池的工作全部是在浮充狀態,在這種情況下至少應每年進行一次放電。放電前應先對電池組進行均衡充電,以達全組電池的均衡。放電過程中如有一只達到放電終止電壓時,應停止放電,繼續放電須先排除落后電池后再放。核對性放電不是追求放出容量的百分比,而是關注并發現和處理落后電池,經對落后電池處理后再作核對性放電實驗。這樣可防止事故,以免放電中落后電池惡化為反極電池。平時每組電池至少應有8只電池作標示電池,作為了解全電池組工作情況的參考,對標示電池應定期測量并做好記錄。在日常維護中需經常檢查的項目有:清潔并檢測電池兩端電壓、溫度;連接處有無松動腐蝕現象,檢測連接條壓降;電池外觀是否完好,有無殼變形和滲漏;極柱、安全閥周圍是否有酸霧逸出;主機設備是否正常等。免維護電池要做到運行、日常管理周到、細致和規范,保證設備保持良好的運行狀況,從而延長使用年限;保證直流母線經常保持合格的電壓和電池的放電容量;保證電池運行和人員的安全可靠。這是電池維護的目的,也是電池運行規程中包括的內容和運行規則。當電池組中發現電壓反極、壓降大、壓差大和酸霧泄漏的電池時,應及時采用相應的方法恢復和修復,對不能恢復和修復的電池要換掉。但不能把不同容量、不同性能、不同廠家的電池聯在一起,否則可能會對整組電池帶來不利影響。對壽命已過期的電池組要及時更換,以免影響到電源系統和設備主機。

第3篇

關鍵詞:通信電源通信網現狀發展趨勢

一、通信電源的發展現狀

(一)供電系統的現狀

通信電源是通信系統必不可少的重要組成部分,其設計目標是安全、可靠、高效、穩定、不間斷地向通信設備提供能源。通信電源必須具備智能監控、無人值守和電池自動管理等功能,從而滿足網絡時代的需求。通信電源系統由交流配電、整流柜、直流配電和監控模塊組成。

(二)通信電源設備的更新換代

近年來,隨著技術的進步,特別是功率器的更新換代,新型電磁材料的不斷使用,功率變換技術的不斷改進,控制方法的不斷進步,以及相關學科的技術不斷融合,通信電源在系統的可靠性、穩定性,電磁兼容性,消除網側電流諧波、提高電能利用率、降低損耗、提高系統的動態性能等等方面都取得長足的進步。

(三)現行通信電源的電路模型和控制技術

目前通信電源的變換電路拓撲結構主要采用雙單端電路,半橋電路和全橋電路,各有優缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。

二、通信電源發展趨勢

(一)開關器件的發展趨勢

電源技術的精髓是電能變換,即利用電能變化技術將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關電源在電源技術中占有重要地位,從10kHz發展到高穩定度、大容量、小體積、開關頻率達到兆赫茲級,開關電源的發展為高頻變化提供了硬件基礎,促進了現代電源技術的繁榮和發展。

(二)通信直流電源產品的技術發展市場需求發展

在需求與技術的共同推動下,通信直流電源產品體現了如下的發展態勢:

體系架構相當長的一段時間內維持穩定。通信直流電源在相當長的時間內還是維持現有的交流配電、整流器模塊(并聯)、直流配電、監控單元、蓄電池等為主要組成部分的架構;功率變換模式也將維持現有的高頻開關模式,暫時不會出現類似從線性電源到開關電源的階躍性的變化。

功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩定,一定程度制約了整機系統的功率密度的提高比率。

更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術、通信電源技術的成熟,以及各通信直流電源設備廠家在可靠性研究上大力投入,通信直流電源產品可靠性呈不斷提高的趨勢。

按照TRIZ理論(“創造性解決問題的理論”的俄語縮略語)描述的技術系統發展進化規律,一般而言,技術的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術,開關電源技術基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內,通信直流電源產品將進入一個緩慢發展的階段,直至有一天,一種新的電源變換技術出現,通信直流電源產品就會再出現一個階躍性的發展,就像開關穩壓技術替代線性穩壓技術,給電源帶來了革命性的變化。

(三)通信用蓄電池技術研究的新進展

通信用蓄電池作為通信系統后備的能源供應手段,其研制、生產和應用技術一直備受世界各國通信行業的重視。隨著科技的發展和技術的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經進入商用化階段。這些新的蓄電池,由于其材料、結構和技術上的先進性,在性能上具有傳統的VRLA電池無可比擬的優越性。

1.釩電池(VanadiumRedoxBattery)。釩電池(VRB)是一種電解值可以流動的電池,目前正在逐步進入商用化階段。

2.燃料電池。燃料電池是一種化學電池,也是一種新型的發電裝置,它所需的化學原料由外部供給,如氫氧燃料電池,只要外部供給氫和氧,經過內部電極、催化劑和堿性電解液的作用,就能產生0.9V電壓的直流電能,同時產生大量的熱能.

3.電源監控系統的發展。隨著互聯網技術應用日益普及和信息處理技術的不斷發展,通信系統從以前的單機或小局域系統逐漸發展至大局域網系統或廣域網系統,大量人力、物力被投入到網絡設備的管理和維護工作上。不過通信設施所處環境越來越復雜,人煙稀少、交通不便都會增大維護的難度,這對電源設備的監控管理提出了新的需求,保護通信互聯網終端的電源設備必須具備數據處理和網絡通信能力。此時,數字化技術就表現出了傳統模擬技術無法實現的優勢,數字化技術的發展逐步表現出傳統模擬技術無法實現的優勢.

4.通信電源的環保要求。環保問題,一方面的指標是通信電源的電流諧波要符合要求,降低電源的輸入諧波,不但可以改善電源對電網的負載特性,減少給電網帶來嚴重污染的情況,還可減少對其他網絡設備的諧波干擾。另一個重要方面,是材料的可循環利用和環境的無污染,這方面需要產品滿足WEEE/ROHS指令。

在通信電源開發、生產早期,人們主要集中研究電源的輸出特性,較少考慮到電源的輸入特性。例如:傳統的在線式電源輸入AC/DC部分通常采用橋式整流濾波電路,其輸入電流呈脈沖狀,導通角約為π/3,波峰因數大于純電阻負載的1.4倍。這些諧波電流大的電源給電網帶來了嚴重的污染,使電網波形失真,實際負荷能力降低,對于三相四線制的電網來說,還很有可能因中性線電流過大而出現不安全隱患。

參考文獻:

[1]朱雄世,《通信電源的現狀與展望》.

[2]《淺析全球通信電源技術發展趨勢》.

[3]《通信直流電源發展趨勢》.

[4]孫向陽、張樹治,《國外通信用蓄電池技術研究的新進展》.

[5]《通信電源技術發展趨勢及標準研究方向》.

[6]曾瑛,《淺談通信電源》.

[7]王改娥、李克民,《談我國通信電源的發展方向》.

[8]王改娥、李克民,《我國通信電源的發展回顧與展望》.

[9]侯福平,《UPS系統在通信網絡中使用的特點及要求》.

[10]《全球通信電源技術發展呈現五大趨勢》.

第4篇

關鍵詞:通信電源開關技術

引言

通信電源是通信行業的動力,在電信網絡中發揮著不可替代的作用,具有無可比擬的重要基礎地位。通信電源又是通信設備系統的心臟,即使是瞬間的中斷也是不允許的,因為通信電源系統發生直流供電中斷故障是災難性的,往往會造成整個通信局(站)和通信網絡的全部中斷和癱瘓。通信電源是電信網絡中不可缺少的重要組成部分,是一個完整、規模日趨龐大和復雜的交換、傳輸、數據、信息、業務、智能等通信網的基石和后臺保障,因此通信電源直接關系到整個網絡的穩定、可靠和暢通,而開關電源因效率高、體積小、重量輕等優點被大量運用在通信設備供電中。

一、開關電源占據通信電源的主導地位

通信直流穩壓電源按照其實現直流穩壓方法的不同,可分為:線性電源、相控電源和開關電源三種。

1.1線性電源是通過串聯調整管來連續控制,其功率調整管總是工作在放大區。由于調整管上功率損耗很大,造成電源效率較低,只有20~40%,發熱損耗嚴重,安裝有體積很大的散熱器,因而功率體積系數只有20~30W/dm3。因此線性電源主要用于小功率、對穩壓精度要求很高的場合,如通信設備內部電路的輔助電源等。

1.2相控電源是將市電直接經整流濾波后提供直流,通過改變晶閘管的導通相位來控制直流電壓。由于相控電源的工作頻率低,工頻變壓器的體積和噪聲大,造成對電網干擾和負載變化的響應慢,設備笨重,且危害維護人員的身體健康。另外,其功率因數較低,只有0.6~0.7,嚴重污染電力電網,效率較低,只有60~80%,造成能源的極大浪費。因此傳統的相控電源已逐漸被淘汰。

1.3開關電源的功率調整管工作在開關狀態,主要的優點在"高頻"上。其工作頻率高,大都在40kHz以上,無煩人的噪聲。體積小,重量輕,適用于分散供電,可與通信設備放在同一機房。效率高,大于90%,在當前能源比較緊張的情況下,能夠在節能上做出很大的貢獻。功率因數高,大于0.92,當采用有效的功率因數校正電路時,功率因數可接近于1,且對公共電網基本上無污染。模塊化的設計,可實行N+1配置,可靠性高。維護方便,可在運行中更換模塊,而不影響系統供電,擴容方便、分段投資,可在初建時,預留終期模塊的機架,隨時擴容。調試方便,內設模擬測試電路,無需另配假負載。具有監控功能,并配有標準通信接口,可實現集中監控,無人值守。

二、開關電源的關鍵技術

開關電源中具有技術突破主要有體現在以下四個方面:

2.1均流技術

大功率電源系統需要用若干臺開關電源并聯,以滿足負載功率的要求,另外通信電源必須通過并聯技術來實現模塊備份,以提高電源系統的可靠性。因此并聯技術在供電系統中必不可少,而并聯運行的整流模塊間需要采用均流措施,它是實現大功率電源系統的關鍵,用以保證模塊間電流應力和熱應力的均勻分配,防止一臺或多臺模塊運行在限流或滿載狀態,同時延長電源系統的壽命和平均無故障時間。

2.2軟開關技術

DC-DC變換器是開關電源的主要組成部分,因此功率變換技術一直受到全世界電力電子學科和行業研究的關注。而如何降低開關損耗,提高開關電源的頻率和開關電源的系統效率,代表了開關電源的發展趨勢。在經過了硬開關PWM(或PFM)技術和硬開關加吸收網絡技術后,軟開關技術得到了廣泛應用。這樣能夠極大地降低開關損耗,減小功率器件電和熱應力,改善器件工作環境,降低電磁干擾,提高功率密度等,為開關電源實現高效、節能、體積小、重量輕和高可靠性的要求做出了貢獻。軟開關技術有:諧振技術、準諧振技術、PWM和準諧振相結合的技術。

2.3功率因數校正技術

功率因數校正技術有:采用三相三線制整流,即無中線整流方式,可使諧波含量大大降低,功率因數可達0.86以上;采用無源功率因數校正技術,即在三相三線整流方式下加入一定的電感,可使功率因數達0.93以上,諧波含量降到10%以下;采用有源功率因數校正技術,即在輸入整流部分加入一級功率處理電路,使無功功率幾乎為0,功率因數可達0.99以上,諧波含量降到5%以下。

2.4智能化監控技術

開關電源大量應用控制技術、計算機技術,進行各種異常保護、信號檢測、電池自動管理等,實時監視通信電源設備運行狀態,記錄和處理有關數據,及時發現故障,以先進的、集中的、自動化的維護管理方式來管理通信電源設備,從而提高供電系統的可靠性。智能化監控技術的應用,使得維護人員面對的不再是復雜的器件和電路,而是一個人機表達和交流的信息,大大改進了維護管理方式。

三、開關電源的發展

開關電源在發展,今后仍要不斷提高開關電源和供電系統的高新技術含量,以支撐高速發展的現代化通信網絡的建設和運行維護管理為主導方向,以高可靠性、高穩定性和可維護性為最終目的。具體有以下幾個方面:

3.1小型化

隨著通信設備日益集成化、小型化和分散化的發展,以及勢在必行的分散供電的廣泛應用,要求開關電源也相應小型化,而開關電源工作頻率高頻化和控制電路集成化,使開關電源的小型化成為可能。特別是隨著小型化開關電源的市場迅速擴大,如接入網、數據產品、移動基站、無線市話等,一些小功率模塊插件形式的開關電源將應運而生,大有蓬勃發展之勢。如中興通訊的ZXDU45嵌入式電源,在結構上采用標準的19英寸插框設計,高度為4U,功能齊全,使用起來極為安全方便。

3.2高智能化

隨著開關電源在通信領域多方面的廣泛使用,而維護人員又不是專業電源維護人員,只有借助其智能化,對電源設備的運行狀態自動檢測,對電源故障及時發現、診斷和處理。這就要求智能化在原有監控功能的基礎上,增加診斷功能,即故障診斷專家系統,以指導維護人員處理問題,加快故障診斷和檢修過程。

3.3電池管理

電池在通信電源系統中的重要性,要求開關電源應具備完善的電池管理功能,充分考慮到電池對管理的需求,全方位地管理電池。也就是說,我們不能滿足于對電池的均/浮充、溫度補償、電池保護等方面的管理,還要在電池的充/放電曲線、容量測試、容量恢復等方面進行高層次的管理。

第5篇

【關鍵詞】通信電源 功率因數 校正技術

1 引言

自改革開放以來,電力系統發展迅速,各級各類的用戶的數量也是呈直線上升,尤其是在計算機、電動機極易服務器等各種高科技先進產品得到推廣之后,導致了阻抗在整個電力系統中也隨之增大,增大的后果是使得電力系統中的無功功率消耗過快,超出額定的要求,同時也嚴重的降低了電力系統中的很多功率因素,降低了整個發電機的輸出功率,最終使得電力傳輸線上的線損明顯增多。與此同時,非線性的電子裝置在電力系統中廣泛使用,使得電網中的諧波越來越多,出現了諧波污染的現象,這也導致了正弦波形發生了畸變,供電的質量越來越得不到保障。所以,研究與分析為什么會產生諧波以及找到相應解決諧波問題的方法是現在的當務之急。

2 諧波分析

(1)諧波產生原因。在整個通信領域里,計算機等非線性設備以及如UPS、整流器、高頻開關電源的變流裝置中極易產生電源系統中的諧波,這些設備的主要原理是利用如IGBT和晶閘管的整流元器件并利用它們的導通特性跟開關特性來切換運行的電流,即將較高頻率的電流強行斷開或接通,這樣就會使得產生的正弦電流發生形變,跟常見的正弦波形會有一定程度上的差別,我們運用數學方法——傅里葉對這種畸變的波形進行分解,所得的結果是基波分量和它整數倍的諧波分量,前者是指理想的正弦交流電能,后者指的就是諧波。

(2)諧波的影響范圍。電壓的幅值在我國是有著十分明確的要求的,理想的情況下,電網中電源所提供的電壓大小為50赫茲,并且這種電壓是單一頻率跟穩定的,但是現在的問題就是隨著諧波的加入,電網也受到了不小的影響,使得電壓的幅值遠遠超過了我國要求的大小,頻率也不再是單一的,使得負載的運行環境的穩定性極差,嚴重影響了負載。

對電網也產生了一下的影響:第一,諧波會產生電流,這種電流會加劇變壓器的漏磁、銅損現象,諧波產生的電壓也會增加鐵損的程度,另外,諧波功率會產生非常大的噪聲,增大了整個線圈的電流,導致了變壓器的鐵芯在磁通量發生高頻交變時出現渦流現象。電源系統本身也會受到諧波極大的影響,它會嚴重降低電網的運行效率,使得輸出的電能得不到有效的利用,白白浪費了能源,同時儀表的精確度也大大降低了。

3 諧波的分析

(1)諧波治理的必要性。供電系統之所以出現如此多的諧波,主要原因是在通信樓中,尤其是在機房中安裝了大量的UPS、變頻空調等非線性設備。出現諧波的最嚴重的后果就是會對供電系統提供的電能質量造成很大的影響,為了使得通信設備受到諧波的危害降到最低甚至避免,治理諧波的重要性便充分體現出來了。另外通信系統中的負載主要分為保障負載和非保障負載,保障負載主要包括上述的UPS、開關電源以及機房專用空調,非保障負載就是指我們日常生活或者辦公所使用的照明、電梯等負載。

由于整流、濾波等非線性元器件的功率非常大,當它們運用到UPS、開關電源時會使整個供電系統產生很多的諧波電流,這些諧波電流又會使得電壓波形嚴重變形,降低了整個系統的功率因素。在UPS中,治理諧波之前,諧波電流的含量不超過50%,諧波電壓的含量僅在5%到11%之間,功率因素大于0.7小于0.85,在早些年,部分廠家的開關電源產品中含有大量的諧波電流,例如一個3000A的開關電源,如果接的負載率在50%左右是,其中包含的諧波電流就達到了40%,但是功率僅大約0.8。

一般通信樞紐樓內UPS開關和開關電源中大容量系統占大多數,具體的數據是UPS的容量一般是300KV到500KV之間為主,2000A到3000A的開關電容量也是經常用到的,它的輸入電流一般都比較大;另外,UPS、開關電源與低壓配電系統一般不會同時安裝在同一個樓層,這樣必然會使輸入電纜的長度增加,增大了線路壓降,導致嚴重發熱,因此我們治理像UPS跟開關電源這樣的諧波問題,最好的辦法就是采取就近的原則來解決。

(2)諧波的抑制方法。經過長期的研究發現,通常抑制諧波有如下幾種方法:第一、在整個供電系統中我們選擇合適的位置安置部分無源濾波器,L-C無源濾波器是經常被使用到諧波補償的一種無源濾波器,這種方法的好處就是裝置簡易、運行環境等也比較安全,但是這種方法需要大量的元器件,通常會造成資源上的不合理使用,不利于節能。第二、因此第二種方法就是在供電系統中帶有電力的有源濾波器,通常情況下,如果時間因素發生了變動,電源系統中的諧波也會隨著相應的出現波動,而電力有源濾波器很好的解決了這一問題,能夠消除系統中的諧波能力十分強勁。

4 結論

改革開放以來,由于越來越多的半導體元件和大功率非線性負荷被廣泛使用,整個電力系統遭受到了諧波的重度“污染”,這些諧波之間又可以相互疊加,使其自身具有一定的功率,降低了電網的有效利用,本文針對電網系統中出現的諧波問題進行了分析,參考目前國內外諧波的研究的發展方向,提出可以在以下幾個方面加強研究:首先,可以深入探究一下通信電源系統的諧波源,如果我們知道了諧波源的種類,諧波源的特性以及諧波產生的機理,才能對其進行針對性的根治,才能合理有效的采用各種消諧的技術來控制諧波;其次,在分析與測量技術上,應加強對不同工況下諧波測量問題的研究,提高諧波測量精度的方法,研制多通道實時諧波監測分析儀和電質量分析儀。最后,進一步加強畸變波形的評估方法的研究,制定出合乎現場實際的、規范化的通信電源系統諧波標準。

參考文獻

[1]羅文.淺析通信電源系統諧波治理與節能降耗[D].通信電源新技術論壇—2010通信電源學術研討會論文集,2010.

[2]姜衛華.通信電源系統的諧波分析與治理[J].信息通信,2013.

[3]孫鵬博.通信電源系統的諧波分析與治理[D].天津大學碩士論文,2012.

第6篇

關鍵詞:通信電源;維護;管理;方法;效益

中圖分類號:S972 文獻標識碼:A 文章編號:1007-9599 (2013) 02-0000-02

通信電源是通信生產的基礎專業。其設備是保證通信供電的安全穩定,不間斷地供電。近年來,科技不斷發展,通信電源產品更新換代的速度也得到了很大提高。其安全性、可靠性、穩定性也有了非常大的保障。既使這樣,隨著社會的進步,現代企業的發展,通信電源設備功能的逐漸強大,舊的維護管理也應該不斷滿足現實需要。所以我們對維護目標提出了更高、更大的要求和設想。為此改變維護觀念和思想,探討通信電源的維護管理也具有劃時代的現實意義和經濟效益。

針對上述,現從以下方面進行闡述。通信電源主要有直流和交流兩大類。

1 直流電源

直流電源是通信生產的核心和主要供電設備。對直流電源維護的好壞不僅影響著通信的安全而且影響著維護成本及運行效益。

1.1 開關電源。開關電源是當今普遍用于通信電源專業的設備。雖然較相控電源有較大節能但仍可以從中挖掘效能,創造更大經濟效益。

為發揮最大效能,首先應做好基礎保障。具體是:(1)定期巡檢整流模塊的輸出電流、電壓、限流值和日常工作數據發現問題及時調整。(2)認真做好《通信電源維護規程》中各維護項目。(3)適時檢查整流模塊風扇情況,保證散熱效果,發現問題及時解決。(4)視環境情況做好整流模塊過濾網,內部清潔。保證整流模塊工作性能良好。

保證了通信安全的同時,要不斷學習開關電源的原理、結構。深入探討研究其內涵逐步提高技術水平。減少對廠家依托,努力做到自己修理故障設備,節約開支。因為,讓廠家修理一塊整流模塊約兩千元左右,對于一個地區或一個省來說,僅此項費用每年就有幾十萬元支出。如果我們組織技術骨干集中攻關,實現這一目標完全可以。(實踐證明:不僅不需較大開支且可行。同時也鍛煉隊伍,發揮了員工的積極性,主動性。)例如:在一個省或地區建立一個技術交流平臺,經常組織業務學習,交流經驗。也可以在一個地區組織部分技術骨干利用維護之余研究學習新技術,新知識。

另外視市電情況,做好整流模塊的關閉可以節約電能。一般地,萬門以上的模塊局基本采用100A整流模塊10個以上。但是,實際中因為市電現在比較穩定,一套開關電源的所有整流模塊全部工作,造成極大的電力浪費且損耗著設備。例如:一個100A整流模塊輸入功率約是1.4KW。一年消耗電能是:1.4KW×24小時×365=12264KW,按非普工業用電價0.53元計算電費是6500元.若日常工作中在不影響供電情況下,關閉一個整流模塊一年節約電費6500元.像包頭網通有萬門局15個,可關閉數量有50個左右,一年節約電費近30多萬元.再考慮近200個接入網點(一個整流模塊輸入功率約是300W―400W)。每年共節約電費40多萬元。這樣不僅節約大量電費且能延長整流模塊壽命,減少維修費用。有較大的經濟效益和社會效益。

關閉整流模塊需注意:(1)已關閉的整流模塊在市電來前要做好開機,防止因來電蓄電池進行均充時整流模塊的負荷電流過大燒毀已工作的整流模塊。有條件的可以利用監控遙控。(2)定期做好整流模塊的倒換工作,做到每個整流模塊工作壽命均勻。(3)做好無人值守機房的停電和來電巡檢與告警事項。

1.2 蓄電池。蓄電池維護主要掌握其原理,通過了解原理進而延長使用壽命。達到發揮其最大效能,降低維護成本來提高經濟效益。目前,通信中隨著科技的發展.蓄電池基本使用的是相對環保型的閥控鉛酸蓄電池即VRLA蓄電池。因為VRLA蓄電池具有少維護,無腐蝕,無污染等優點。所以就VRLA蓄電池作為討論對象:

(1)VRLA蓄電池屬于密封電池,對溫度要求較高。因此我們在維護中要防止熱失控。保持溫度在要求的范圍內(25℃),環境溫度在20℃―30℃。同時調好浮充電壓。蓄電池在浮充狀態下浮充電流隨浮充電壓升高而增大,隨溫度升高而升高。因此做好溫度補償非常關鍵。(2)放電后及時充電(開關電源有此功能)。尤其放電時間長或負荷較大時,開關電源自動充電不能及時滿足要求,有時需均充。(3)充電不要過于頻繁。充電過于頻繁也會影響電池壽命且消耗不必要的電能。既不經濟又影響電池壽命。(4)定期測試單體電池電壓、每組電池總電壓、環境溫度。保持每只電池間壓差在100MV內,發現落后電池及時處理。(5)定期檢查電池間的連接條的松緊度,電池閥是否完好。

通過以上方法實現延長電池使用壽命,節約維護成本,增加效益完全可以。也符合企業降成本增效益的規律。

1.3 其它直流設備。其它直流設備包括直流變換器、直流屏等。只要按照《通信電源維護規程》要求認真做好就能達到目的。

2 交流電源

交流電源主要由市電引入和自備柴油發電機發電保障,用于通信生產及非生產。所以從自身交流設備考慮。

2.1 高壓配電設備。

(1)高壓配電設備中的直流供電電源C直流電源屏改為直流-直流變換器,不僅減少投資,而且節約較多的電能,減少電費支出。(2)有條件的地方可以與供電部門協商適當調低市電輸入電壓,達到降低輸入功率,節約電耗,減少電費。(3)使用新型節能環保變壓器,減少設備本身電耗,降低維護費用。

2.2 低壓配電設備。低壓配電設備要確保電容補償柜功率因數在0.99以上。這樣可以節約很大電能損耗。

通過上面分析,根據公式即可明白:W=1.732×UICOS?U―COS?―W

高低壓配電設備維護保證維護規程項目完成后,做到上述工作節約相當大電能,經濟效益和社會效益雙豐收。

2.3 柴油發電機。柴油發電機在保證供電的前提下,發電時盡可能使輸出低電壓,低頻率。條件允許時,配備兩個油箱,一個儲備0#柴油,一個儲備-35#柴油。低溫季節使用0#柴油;高溫季節使用-35#柴油。從源頭節約油費,處于高油價的今天這樣做很有必要。且節約很大支出。

2.4 UPS電源。按照上面蓄電池維護方法做好UPS電池維護,UPS禁止接入感性負載。就能延長UPS壽命,節約維護費用。

對于交流電源維護,還注意機房的空調機的使用,因為空調機耗電很大,不要為了一時省事讓空調不停的做過分的工作。一個較大局若使用或管理不好空調一年會浪費幾十萬的電費,這樣一來不知不覺就提高了維護成本,浪費了電能。

根據以上對通信電源維護分析:一個地市局一年能減少幾十萬元開支,而且創造很大經濟效益。也適應建設節約型社會的理念。

第7篇

從遠古時代以來,陽光、空氣、食物和水一直是人們賴以生存的必需品,而今在科學技術飛躍發展的時代,電也已成為人們的必需品。因為有了電,我們的生活才有了歡樂。正是由于通信系統的安全優質運轉,無處不在的通信電源則是堅實的基礎和根本保障。實施集中監控管理是網絡技術發展的必然趨勢,是現代通信網的要求,也是企業減員增效的有效措施。各種電源設備要智能化、標準化,符合開放式通信協議。若電源系統不能輸出規定電流,電壓超出允許波動范圍,雜音電壓高于允許值時間并持續10s以上者均判定為系統故障。原交流系統中的電壓、頻率或波形畸變超出規定范圍持續時間大于60s者均判定為故障。為此,要保證通信電源系統的可靠性,有條件的通信部門應盡量從兩個不同的地方引入2路市電輸入,并設置2路市電電能自動倒換裝置;所用設備要選用可靠性高的高頻開關整流設備,采用模塊化、熱插拔式結構以便于更換,并合理配置備份設備。任何新技術、新設備未經充分驗證、試運行前均不得進入供電系統。供電方式要大力推廣分散供電,使用同一種直流電壓的通信設備采用兩個以上的獨立供電系統,這也是今后通信網絡容量和規模不斷擴大、各種新業引入的新要求。為了盡量縮短設備的平均故障修復時間,要經常分析運行參數,預測故障發生的時間并及時排除。還要提高技術維護水平,采用集中維護、遠程遙信、遙測維護。在實施過程中,三遙點的設置要合理,絕不是越多越好,要以可靠性、實用性為基本原則,宜簡勿繁。

2電源系統使用中應重視的問題

電源系統目前廣泛使用高頻開關電源系統設備,其智能化程度高,電池采用了免維護蓄電池,這雖給用戶帶來了許多便利,但在使用過程中還應在多方面引起注意,確保使用安全。

2.1按電源系統的使用要求和功率余量大小來分,在使用中要避免隨意增加大功率的額外設備,也不允許在滿負載狀態下長期運行。工作性質決定了電源系統幾乎是在不間斷狀態下運行的,增加大功率負載或在基本滿載狀態下工作,都會造成整流模塊出故障,嚴重時將損壞變換器。自備發電機的輸出電壓、波形、頻率和幅度應滿足電源系統對輸入電壓的要求,另外發電機的功率要大于開關電源設備的額定輸入功率,否則,將會造成電源系統設備工作異常或損壞。

2.2電池應避免大電流充放電,理論上充電時可以接受大電流,但在實際操作中應盡量避免,否則會造成電池極板膨脹變形,使得極板活性物質脫落,電池內阻增大且溫度升高,嚴重時將造成容量下降,壽命提前終止。在任何情況下都應防止電池短路或深度放電,因為電池的循環壽命和放電深度有關。放電深度越深循環壽命越短。在容量試驗或放電檢修中,通常放電達到容量的30%-50%就可以了。

2.3鉛酸蓄電池的容量和電解液的比重是線性關系,通過測量比重可以了解電池的存儲能量情況。閥控式密封蓄電池是貧液電池,且無法進行電解液比重測量,所以如何判定它的好壞,預測貯備容量已成為當今業界的一大難題。用電導儀測電池的內阻是判定蓄電池好壞的一種有參考價值的方法,但尚不能準確測定電池的好壞程度。目前,最可靠的方法還是放電法。在可靠性、經濟性、可使用性、維護性等方面綜合比較,應選用四沖程油機為原動機發電機組。四沖程油機結構簡單,采用多缸均衡做功、增壓等一系列成熟技術適合于大容量機組的要求。其噪音小、污染小、性價比高。使用中把機組產生的熱量排到室外,保證機組周圍環境濕度不超過指標要求。

3電源系統的維護與檢修

當電源系統出現故障時,應先查明原因,分清是負載還是電源系統,是主機還是電池組。雖說開關電源系統主機有故障自檢功能,但它對面而不對點,對更換配件很方便,但要維修故障點,仍需做大量的分析、檢測工作。另外如自檢部分發生故障,顯示的故障內容則可能有誤。對主機出現擊穿、斷保險或燒毀器件的故障,一定要查明原因并排除故障后才能重新啟動,否則會接連發生相同的故障。再好的設備也有壽命期,也會出現各類故障,但維護工作做得好可以延長壽命并減少故障的發生,不要因為高智能、免維護而忽略了本應進行的維護工作,預防在任何時候都是安全運行的重要保障。高頻開關電源設備在正常使用情況下,主機的維護工作量很少,主要是防塵和定期除塵。特別是氣候干燥的地區,空氣中的灰粒較多,灰塵將在機內沉積,當遇空氣潮濕時會引起主機控制紊亂造成主機工作失常,并發生不準確告警。另大量灰塵也會造成器件散熱不好。一般每季度應徹底清潔一次。其次就是在除塵時檢查各連接件和插接件有無松動和接觸不牢的情況。由于整流器對瞬時脈沖干擾不能消除,整流后的電壓仍存在干擾脈沖。蓄電池除有存儲直流電能的功能外,其等效電容量的大小與蓄能電池容量大小成正比。因此,維護檢修蓄電池的工作是非常重要的,雖說蓄電池組目前都采用了免維護電池,但這只是免除了以往的測比、配比、定時添加蒸餾水的工作。但因工作狀態對電池的影響并沒有改變,不正常工作狀態對電池造成的影響沒有變,所以蓄電池的工作全部是在浮充狀態,在這種情況下至少應每年進行一次放電。放電前應先對電池組進行均衡充電,以達全組電池的均衡。放電過程中如有一只達到放電終止電壓時,應停止放電,繼續放電須先排除落后電池后再放。核對性放電不是追求放出容量的百分比,而是關注并發現和處理落后電池,經對落后電池處理后再作核對性放電實驗。這樣可防止事故,以免放電中落后電池惡化為反極電池。平時每組電池至少應有8只電池作標示電池,作為了解全電池組工作情況的參考,對標示電池應定期測量并做好記錄。在日常維護中需經常檢查的項目有:清潔并檢測電池兩端電壓、溫度;連接處有無松動腐蝕現象,檢測連接條壓降;電池外觀是否完好,有無殼變形和滲漏;極柱、安全閥周圍是否有酸霧逸出;主機設備是否正常等。免維護電池要做到運行、日常管理周到、細致和規范,保證設備保持良好的運行狀況,從而延長使用年限;保證直流母線經常保持合格的電壓和電池的放電容量;保證電池運行和人員的安全可靠。這是電池維護的目的,也是電池運行規程中包括的內容和運行規則。當電池組中發現電壓反極、壓降大、壓差大和酸霧泄漏的電池時,應及時采用相應的方法恢復和修復,對不能恢復和修復的電池要換掉。但不能把不同容量、不同性能、不同廠家的電池聯在一起,否則可能會對整組電池帶來不利影響。對壽命已過期的電池組要及時更換,以免影響到電源系統和設備主機。

參考文獻:

[1]樊勤.通信電源的管理與應用[J].內蒙古科技與經濟2006(3).

[2]李京生.淺談通信電源的發展和管理[J].科技情報開發與經濟2005(16).

第8篇

從這么多年從事通信網絡設計工作的經驗中,筆者了解到傳統的核心網絡架構是相當復雜的,不僅一二級核心網絡層次多,而且大量的網元導致網絡復雜,整網能耗偏高。以筆者設計的機房為例:機房空間有限,服務器的能耗非常高,導致散熱程度差,而且需要加裝空調,再加上每年擴容的需要,交換機走線和設備布局的不合理,使機房無法實施更進一步的節能降耗措施。因此建立綠色核心網絡勢在必行。建立綠色核心網絡首先應該優化核心網絡架構,實行網絡的扁平化管理,減少核心網中網元的數量,使核心設備上移,逐步使用集成度高,電信級別的平臺代替傳統的服務器,同時建立專業的機房散熱管理方案,如采用自下而上的回風流方式提高冷風的利用率,尤其是在北方城市,這樣就可以有效減少機房空調的使用。

筆者還要強調一下,在工程前期調研及初設階段首先考慮選擇擁有綠色基站技術的供應商和運營商,例如華為和Vodafone。他們擁有IP組網、分布式基站、先進功放、智能電源管理、多載頻技術、統一架構等關鍵綠色技術。這樣設計的基站穩定性、可靠性高,功耗能夠得到進一步優化,而且更有利于網絡的平穩升級。

二、充分利用軟件技術降低能耗

除提高設計水平和利用硬件升級等手段降低能耗以外,充分利用軟件技術實現節能降耗也越來越重要。隨著軟件技術的飛速發展,其應用領域也越來越廣泛,大到網絡轉型,小到CPU超頻。以筆者所在單位為例,通信網絡轉型的速度遠遠高于其他單位基礎設施的更新換代,如果頻繁地對網絡轉型,將造成大量在線設備的退網淘汰以及更多的資源消耗,那么利用軟件技術提高現有網絡設備的工作效率,從而降低能耗也是非常重要的手段。通過對上網用戶在線時間的統計分析,全網在忙時和閑時網絡負荷變換最大,那么就可以通過軟件調整核心網絡設備的主頻,讓它隨網絡負荷變化,在閑時自動將設備處理能力降低,減少電能的消耗。

三、提高空間利用率降低設備冗余度

隨著通信產業的蓬勃發展,每年入網用戶日益增多,基站和設備間能夠利用的空間越來越小,設備密度也越來越大,電力消耗明顯提高,因此采用高集成度或分布式設計方案來減少基站和設備間的空間占用,使用體積更小,重量更輕,支持端口更多的設備來有效降低設備冗余度,對于降低能耗也是重要的綠色手段。對于高端網絡設備來講,性能和功能無疑是最重要的,功耗降低會以性能的降低為代價。一般的情況下,為保證功能、性能、業務卡的數量和運行可靠,設備的功耗也會較大。這類設備數量較少,放置位置的環境情況也比較好。因此,在選擇高端設備方面我們只是把功耗指標作為一個輔助的參考指標。

對于低端的網絡產品,如數量巨大的接入層交換機,雖然他們的功能都很強大,但是我們實際應用時只會用到它的部分功能,完全可以通過犧牲一些我們不需要的性能來換取設備的功耗降低。現在有一些接入層交換機因為自身功耗小,已經實現了設備內部無風扇,這類產品就能很好地降低設備的功耗。對于低端網絡設備來說,采購過程中會把功耗作為一個比較重要的指標來考慮

四、推崇綠色環保能源的使用

利用太陽能和風能等混合能源,可更好地保護環境,減少污染物排放。在有條件的地區充分利用太陽能、風能作為輔助能源,降低電能消耗,分解能源問題。在北方城市,利用季節明顯,冬季日夜溫差較大的特點,優化基站、核心機房、設備間的通風設計方案和溫度控制方案,充分利用自然環境溫度實現溫控的目的,減少冷卻系統和大功率空調的使用,降低能耗,建立更多能源使用的綠色通道,使能源利用率更高。

為了使通信產業向著更加綠色的方向發展,節能降耗勢在必行,讓我們共同努力,打造出更多的綠色通道,從技術上提高設備、能源的使用效率,減少不必要的損耗,以實際行動來保護環境,推動通信產業持續健康發展。

參考文獻:

[1]梁文斌.通信機房節能降耗前景廣闊[N].人民郵電,2008,03-06

[2]張炳華.通信局(站)電源系統節能降耗措施探討[J].通信電源技術,2008,(06)

第9篇

1.電力電子技術的發展

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

1.1整流器時代

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2.現代電力電子的應用領域

2.1計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。

現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。

3.3數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在

六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在

八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4綠色化

電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。

第10篇

(北京中唐科華電力設備有限公司河北分公司 河北 邯鄲 056003)

【摘要】電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。

關鍵詞 電力電子技術;發展

現代電源技術是應用電力電子半導體器件,綜合自動控制、計算機(微處理器)技術和電磁技術的多學科邊緣交又技術。在各種高質量、高效、高可靠性的電源中起關鍵作用,是現代電力電子技術的具體應用。

當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。

1.電力電子技術的發展?

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

2.現代電力電子的應用領域?

2.1計算機高效率綠色電源。?

(1)高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。?

(2)計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星”計劃規定,桌上型個人電腦或相關的外圍設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。?

2.2通信用高頻開關電源。?

(1)通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50~100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。?

(2)因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。?

2.3直流-直流(DC/DC)變換器。?

(1)DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。?

(2)通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。?

2.4不間斷電源(UPS)。?

(1)不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。?

(2)現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。?

(3)目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。?

2.5變頻器電源。?

(1)變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。?

(2)國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。?

2.6高頻逆變式整流焊機電源。?

(1)高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。?

(2)逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。?

(3)由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。?

(4)國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29Kg。?

2.7大功率開關型高壓直流電源。?

(1)大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100KW。?

(2)自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。?

(3)國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。?

2.8電力有源濾波器。?

(1)傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。?

(2)電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。?

2.9分布式開關電源供電系統。?

(1)分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。?

(2)八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。?

(3)分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢?

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。?

3.1高頻化。

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。?

3.2模塊化。?

(1)模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。?

(2)由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。?

3.3數字化。

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。?

3.4綠色化。?

(1)電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。?

(2)現代電力電子技術是開關電源技術發展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現,現代電源技術將在實際需要的推動下快速發展。在傳統的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態,從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優良的開關電源。

4.總而言之?

第11篇

論文關鍵詞:開關電源,紋波,濾波器

1.引言

開關電源是利用現代電力電子技術,控制開關管開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈沖寬度調制(PWM)控制IC和MOSFET構成。開關電源和線性電源相比,紋波系數通常要大一些,但是紋波系數又是開關電源的一項重要指標,如果紋波大就會影響電子電路的正常工作,出現信號源的不純凈,放大器噪聲與過載等問題。本文針對開關電源的紋波進行研究,并提出抑制開關電源紋波的方法。

2.開關電源的原理

開關穩壓電源的核心是電壓深度負反饋的脈沖寬度調制器,功率器件工作于開關狀態,因此功率低,效率高。開關電源因省去了笨重的工頻變壓器而使體積和重量都有不同程度的減少和減輕,被廣泛地應用在許多輸出電壓、輸出電流較為穩定的場合,開關電源的主電路圖如圖1。

圖1開關電源主電路圖

由電路圖可以看出,市電經整流濾波后變為311V高壓,經K1K4功率開關管有序工作后,變為脈沖信號加至高頻變壓器的初級,脈沖的高度始終為311V。當K1、K4開通時,311V高壓電流經K1正向流入主變壓器初級,經K4流出,在變壓器初級形成一個正向脈沖,同理,當K2、K3開通時,311V高壓電流經K3反向流入主變壓器初級,經K2流出,在變壓器初級形成一個反向脈沖。由于開關電源的工作原理,使其紋波噪聲不可避免,而開關電源發展的重要方向是高頻、高可靠、低紋波。為了抑制干擾紋波,減少在感應回路中的電壓,防止電源紋波影響下一級電路的性能有必要先分析一下開關電源紋波產生的原因。

3.開關電源紋波產生的原因

我們最終的目的是要把輸出紋波降低到可以忍受的程度,達到這個目的最根本的解決方法就是要盡量避免紋波的產生,隨著SWITCH的開關,電感L中的電流也是在輸出電流的有效值上下波動的。所以在輸出端也會出現一個與SWITCH同頻率的紋波,一般所說的紋波就是指這個。

另外,SWITCH一般選用雙極性晶體管或者MOSFET,不管是哪種,在其導通和截止的時候,都會有一個上升時間和下降時間。這時候在電路中就會出現一個與SWITCH上升下降時間的頻率相同或者奇數倍頻的噪聲,一般為幾十兆赫。

如果是AC/DC變換器,除了上述兩種紋波(噪聲)以外,還有AC噪聲,頻率是輸入AC電源的頻率,為50~60Hz左右。還有一種共模噪聲,是由于很多開關電源的功率器件使用外殼作為散熱器,產生的等效電容導致的。

4.開關電源紋波抑制方法

對于開關電源紋波,理論上和實際上都是一定存在的。為了實現開關電源的低紋波輸出,對低頻電源噪聲必須采取濾波措施;對于高頻噪聲,開關電源需要依靠功率器件對輸入直流電壓進行高頻變脈寬波斬波而后整流濾波實現穩壓輸出的。受功率器件開關損耗的限制,電源的開關頻率一般取20KHz-100KHz,開關頻率越高,電感電容越大,則輸出波紋越小。在其輸出端含有與斬波頻率同頻的高噪聲,其大小主要和開關電源的開關頻率及輸出濾波器的結構和參數有關。下面我們提出抑制或減少電源紋波的有效方法:

1.加大電感和輸出電容濾波

根據開關電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

同樣,輸出電容Co與紋波電壓Vp_p的關系:Co=Ipk(Ton+Toff)/8Vripple(p_p),可以看出,加大輸出電容值可以減小紋波。通常的做法,對于輸出電容,使用鋁電解電容以達到大容量的目的。但是電解電容在抑制高頻噪聲方面效果不是很好,而且等效串聯電阻(ESR)也比較大,所以會在它旁邊并聯一個陶瓷電容,來彌補鋁電解電容的不足。同時,開關電源工作時,輸入端的電壓Vin不變,但是電流是隨開關變化的。這時輸入電源不會很好地提供電流,通常在靠近電流輸入端,并聯電容來提供電流。

2.二級濾波,再加一級LC濾波器。

LC濾波器對噪紋波的抑制作用比較明顯,根據要除去的紋波頻率選擇合適的電感電容構成濾波電路,一般能夠很好的減小紋波。但是這種情況下需要考慮反饋比較電壓的采樣點。采樣點選在LC濾波器之前,輸出電壓會降低。因為任何電感都有一個直流電阻,當有電流輸出時,在電感上會有壓降產生,導致電源的輸出電壓降低,而且這個壓降是隨輸出電流變化的。

采樣點選在LC濾波器之后,這樣輸出電壓就是我們所希望得到的電壓,這樣的缺點是在電源系統內部引入了一個電感和一個電容,有可能會導致系統不穩定。

3.開關電源輸出之后,接低壓差線性穩壓器(LDO)濾波。

這是減少紋波和噪聲最有效的辦法,輸出電壓恒定,不需要改變原有的反饋系統,但也是成本最高,功耗最高的辦法。任何一款LDO都有一項指標:噪音抑制比。對幾百千赫的開關紋波,LDO的抑制效果非常好。但在高頻范圍內,該LDO的效果就不那么理想了。

4.正確合理的印制電路板(PCB)布線

開關電源PCB排版是開發電源產品中的一個重要過程。

對減小紋波,開關電源的PCB布線也非常關鍵,許多情況下,一個在紙上設計得非常完美的電源可能在初次調試時無法正常工作,原因是該電源的PCB排版存在著許多問題。開關電源的紋波太大,或者開關電源產生的電磁干擾影響到其電子產品的正常工作,所以正確合理的電源PCB排版就變得非常重要。注意PCB的布局、布線和接地,可以減少開關電源波紋。

在選用濾波元件時,一般只說要滿足脈動要求,在安裝尺寸容許的前提下,采用較大的L較小的C或采用較小的L較大的C均可。但是在實際中需要考慮輸出電壓沖擊值及其動態響應特征,電感量愈大,沖擊值越大,動態響應也越大。

濾波器的計算式復雜的,在設計中,常常是按照一定的范圍選取L和C,通過在線路中試驗,測試各項指標,并根據測試值修正元件值,以選取合適的元件,電容器要選高頻性能好的無感聚苯乙烯電容、陶瓷電容、鋁電解電容等。

5.結束語

開關電源由于功耗小效率高,體積小,重量輕,穩壓范圍廣,電路形式靈活等特點,廣泛地應用于計算機、通信等各類電子設備。本文提出的抑制開關電源波紋方法我們在設計開關電源的時都有研究及使用,這些方法有各自的優缺點,選擇合適的方法關鍵是根據自己的設計要求,比如產品體積,成本,開發周期等。

參考文獻

1 孟建輝.開關電源的基本原理及發展趨勢[J].通信電源技術,2009.6

2 鄭憲龍,和軍平等.DC/DC開關電源共模EMI濾波器的研制[J].電力電子技術,2007.12

3 張國安,翟長生.沖量控制技術消除開關電源低頻波紋的研究[J].電力電子技術,2009.4

第12篇

【關鍵詞】 直流系統 變電站 蓄電池 均衡回路

一、蓄電池及現行監測方法

1.1蓄電池

閥控式密閉鉛酸蓄電池因其日常維護的方便以及穩定性較強、占地小、不用加水等優點被廣泛的應用在各供電企業,但是閥控式密閉對工作環境和充放電要求比較嚴格,不允許對蓄電池進行過充和欠充,但還是常常由于過充和欠充對蓄電池產生影響,大大縮短了蓄電池的使用壽命,因此研發一種有效防止蓄電池過充和欠充的監測技術將會大大延長現有蓄電池的使用壽命。

1.2現有蓄電池監測方法及效果

1、核對性容量測試法:該方法主要是將蓄電池組以0.1C的電流進行放電,原理上是可以測量出該組蓄電池的容量(即在交流掉電時,蓄電池組能持續對外供電的能力),但是這種方法在放電時會讓原本蓄電池中容量小的蓄電池提前放電完畢產生過放,充電時會讓原本蓄電池中沒有將容量放完的蓄電池提前充電完成產生過充,僅僅能發現問題,而不能解決問題,且該方法操作復雜,中間間隔周期一般較長。

2、內阻測試法:該方法通過測試蓄電池組中各節蓄電池的內阻進行檢測蓄電池的好壞,但是由于內阻測試會受到蓄電池組中各節蓄電池的差異、電壓、溫度等影響,在早期無法發現問題,不能進行有效的預防,當發現時各節蓄電池的差異已相差過大。

3、電壓巡檢法:該方法通過實時電壓巡檢來判斷電池的狀態,由于蓄電池組平時都處在充電機的浮充狀態,各節蓄電池的電壓雖有差異但是不經過斷掉充電機無法發現真實的差異,只能檢測出性能已非常劣化的電池。

二、電壓均衡回路對蓄電池維護的研究

2.1導致蓄電池過充過放的原因

閥控式密閉鉛酸蓄電池由于其自身的差異即使是同批次的蓄電池也不能做到容量完全的一致,在組成蓄電池組后經過一段時間的運行差異會越來越大,以2V蓄電池浮充狀態為標準,假如浮充電壓為2.25V,每組電池20節,那么浮充電壓為2.25V*20=45V,當蓄電池組的組壓為45V時,由于電池的差異會導致某幾節高于2.25V,某幾節低于2.25V,電壓高的電池就會長期處于過充狀態,會導致電池板柵腐蝕加速,活性物質松動,嚴重時甚至導致電池鼓肚變形。如此下去會導致這種差異越來越大。由于蓄電池串聯在一起進行充電放電,而現有的蓄電池在線監測裝置又無法針對某幾節電池單獨進行放電,因此這種差異無法消失,導致蓄電池組整組性能越來越差,進入惡性循環狀態。怎樣讓蓄電池組跳出這種惡性循環狀態,這是本文的重點研究方向。

2.2電壓均衡回路在蓄電池在線監測裝置中的應用

2.2.1電壓均衡回路設計思想

在整組蓄電池中,由于充電機設置的組壓是根據全部蓄電池完全處于浮充狀態計算得來,因此有過充的蓄電池存在便會有欠充的蓄電池存在,不將過充的蓄電池電壓降下來充電機就不會對蓄電池組進行充電,欠充的蓄電池便會繼續存在。所以解決問題的關鍵在于能否將過充的蓄電池恢復至正常狀態,由于蓄電池串聯的特性,整組放電會連帶欠充的蓄電池一起放電,只有單節蓄電池構成一個小型的均衡回路,通過該回路進行小電流的放電,才會使欠充的蓄電池進行充電,如圖1所示:

2.2.2電壓均衡回路工作原理

1、系統構成及各部分功能:如圖1所示蓄電池在線監測設備可分為實時監測和均衡回路兩部分:實時監測為監測蓄電池的電壓、溫度以及監測流經均衡回路的電流也可通過監測充電機當前的狀態計算出蓄電池的狀態(充電狀態或放電狀態、當前的電流值等);均衡回路為一橫跨蓄電池兩端的小型放電回路,根據實時監測傳回的數據進行工作。

2、電壓均衡回路的工作:假設系統工作的蓄電池組為某一變電站的108節蓄電池,浮充電壓為2.25V,充電機的浮充電壓為:108*2.25V=243V,在最理想的狀態下,蓄電池組中各蓄電池的電壓應都為2.25V,顯然這種情況是不可能發生的,各蓄電池之間一定會存在一定的電壓差,對于新投運或維護較好的蓄電池組有時這種差值會比較小處于一種可接受的范圍內,但隨著投運時間越來越長這種差值便不斷擴大,而電壓均衡回路則能將這種差異不斷縮小并維持在一定的范圍內。

具體的工作為:(1)、先由監測裝置根據蓄電池組的相關參數計算出每節蓄電池的平均電壓Vave,可人工設置均衡均差值,也可使用默認值;(2)、監測裝置對實時監測電路傳輸回的當前各節蓄電池電壓值進行計算后與設置的均衡均差值進行比較,當差值大于設定的均差值后,監測裝置下發均衡命令和平均電壓值;(3)、均衡回路控制電路受到均衡命令后通過判斷所監測蓄電池電壓與平均電壓大小后,控制均衡回路的通斷;(4)、當電壓高的蓄電池通過均衡回路放電后,便會使蓄電池組的組壓降低,誘導充電機對蓄電池組充電,此時蓄電池組中沒有開通均衡回路的電池(即電壓低的電池)進入充電狀態;(5)、根據設置的均差值對電池進行充放電,進入動態平衡。

2.2.3電壓均衡回路意義

(1)、延長蓄電池使用壽命:解決了蓄電池組中各節蓄電池因電壓差值過大產生的過充和欠充,動態的并將這種差值維持在一定的范圍內,避免了蓄電池因過充和欠充造成的壽命縮短等問題;(2)、提高蓄電池組可靠性:以前的蓄電池組中因存在欠充的蓄電池會導致在對外供電或核對性放電時,無法達到蓄電池組設計的容量要求,電池電壓的均衡是滿足蓄電池容量的充分條件,從這個意義上講,均衡回路保證了蓄電池組的可靠性,也保證了直流系統的可靠性;(3)、減輕人員維護負擔、保護環境:由于均衡的自動化進行,維護人員可通過后臺監測電壓數據便可清晰得知當前電池的狀態和均衡效果,減輕人員到現場維護的負擔,同時由于延長了蓄電池組的更換周期,減少了舊電池對環境造成的影響。

三、結論

本文主要就電壓均衡回路在變電站蓄電池在線監測裝置的應用的課題,通過從可靠性、經濟性、實用性等方面探討了應用的可行性,能夠很好解決現有蓄電池組因電壓不均衡造成的蓄電池過充和欠充的問題,但是由于閥控式密閉鉛酸蓄電池結構的復雜,在日常的維護工作中,不論是在維護理論還是測試設備上都需要不斷的改進、完善,來確保蓄電池組的安全穩定的工作,不斷提高知識水平,使電力系統更加安全、穩定、可靠運行,提升電力企業的良好社會形象。

參 考 文 獻

[1] 術守喜.亓學廣.陶鑫.劉惠萍,閥控式密封鉛酸蓄電池的壽命及失效分析.《通信電源技術》, 2006年06期

亚洲精品无码久久久久久久性色,淫荡人妻一区二区三区在线视频,精品一级片高清无码,国产一区中文字幕无码
日韩激情精品一区二区三区 | 亚洲日韩国产天堂网 | 亚洲欧美国产制服日本一区二区 | 天天欧美日韩在线一区 | 日日橹狠爱欧美视频国产 | 日韩精品日韩字幕亚洲区 |