0
首頁 精品范文 電源技術發展論文

電源技術發展論文

時間:2022-12-28 04:54:43

開篇:寫作不僅是一種記錄,更是一種創造,它讓我們能夠捕捉那些稍縱即逝的靈感,將它們永久地定格在紙上。下面是小編精心整理的12篇電源技術發展論文,希望這些內容能成為您創作過程中的良師益友,陪伴您不斷探索和進步。

電源技術發展論文

第1篇

(一)供電系統的現狀

通信電源是通信系統必不可少的重要組成部分,其設計目標是安全、可靠、高效、穩定、不間斷地向通信設備提供能源。通信電源必須具備智能監控、無人值守和電池自動管理等功能,從而滿足網絡時代的需求。通信電源系統由交流配電、整流柜、直流配電和監控模塊組成。

(二)通信電源設備的更新換代

近年來,隨著技術的進步,特別是功率器的更新換代,新型電磁材料的不斷使用,功率變換技術的不斷改進,控制方法的不斷進步,以及相關學科的技術不斷融合,通信電源在系統的可靠性、穩定性,電磁兼容性,消除網側電流諧波、提高電能利用率、降低損耗、提高系統的動態性能等等方面都取得長足的進步。

(三)現行通信電源的電路模型和控制技術

目前通信電源的變換電路拓撲結構主要采用雙單端電路,半橋電路和全橋電路,各有優缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。

二、通信電源發展趨勢

(一)開關器件的發展趨勢

電源技術的精髓是電能變換,即利用電能變化技術將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關電源在電源技術中占有重要地位,從10kHz發展到高穩定度、大容量、小體積、開關頻率達到兆赫茲級,開關電源的發展為高頻變化提供了硬件基礎,促進了現代電源技術的繁榮和發展。

(二)通信直流電源產品的技術發展市場需求發展

在需求與技術的共同推動下,通信直流電源產品體現了如下的發展態勢:

體系架構相當長的一段時間內維持穩定。通信直流電源在相當長的時間內還是維持現有的交流配電、整流器模塊(并聯)、直流配電、監控單元、蓄電池等為主要組成部分的架構;功率變換模式也將維持現有的高頻開關模式,暫時不會出現類似從線性電源到開關電源的階躍性的變化。

功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩定,一定程度制約了整機系統的功率密度的提高比率。

更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術、通信電源技術的成熟,以及各通信直流電源設備廠家在可靠性研究上大力投入,通信直流電源產品可靠性呈不斷提高的趨勢。

按照TRIZ理論(“創造性解決問題的理論”的俄語縮略語)描述的技術系統發展進化規律,一般而言,技術的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術,開關電源技術基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內,通信直流電源產品將進入一個緩慢發展的階段,直至有一天,一種新的電源變換技術出現,通信直流電源產品就會再出現一個階躍性的發展,就像開關穩壓技術替代線性穩壓技術,給電源帶來了革命性的變化。

(三)通信用蓄電池技術研究的新進展

通信用蓄電池作為通信系統后備的能源供應手段,其研制、生產和應用技術一直備受世界各國通信行業的重視。隨著科技的發展和技術的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經進入商用化階段。這些新的蓄電池,由于其材料、結構和技術上的先進性,在性能上具有傳統的VRLA電池無可比擬的優越性。

[論文關鍵詞]:通信電源通信網現狀發展趨勢

[論文摘要]:通信電源是向通信設備提供交直流電的電能源,是整個通信電信網的能量保證。通信電源系統由交流供電系統、直流供電系統和相應的保護系統構成。通信電源系統的設備多,分布廣,不僅單個電源設備的可靠性會影響系統的可靠性,電源系統的總體結構也會對自身的可靠性造成很大的影響。

一、通信電源的發展現狀

(一)供電系統的現狀

通信電源是通信系統必不可少的重要組成部分,其設計目標是安全、可靠、高效、穩定、不間斷地向通信設備提供能源。通信電源必須具備智能監控、無人值守和電池自動管理等功能,從而滿足網絡時代的需求。通信電源系統由交流配電、整流柜、直流配電和監控模塊組成。

(二)通信電源設備的更新換代

近年來,隨著技術的進步,特別是功率器的更新換代,新型電磁材料的不斷使用,功率變換技術的不斷改進,控制方法的不斷進步,以及相關學科的技術不斷融合,通信電源在系統的可靠性、穩定性,電磁兼容性,消除網側電流諧波、提高電能利用率、降低損耗、提高系統的動態性能等等方面都取得長足的進步。

(三)現行通信電源的電路模型和控制技術

目前通信電源的變換電路拓撲結構主要采用雙單端電路,半橋電路和全橋電路,各有優缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。

二、通信電源發展趨勢

(一)開關器件的發展趨勢

電源技術的精髓是電能變換,即利用電能變化技術將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關電源在電源技術中占有重要地位,從10kHz發展到高穩定度、大容量、小體積、開關頻率達到兆赫茲級,開關電源的發展為高頻變化提供了硬件基礎,促進了現代電源技術的繁榮和發展。

(二)通信直流電源產品的技術發展市場需求發展

在需求與技術的共同推動下,通信直流電源產品體現了如下的發展態勢:

體系架構相當長的一段時間內維持穩定。通信直流電源在相當長的時間內還是維持現有的交流配電、整流器模塊(并聯)、直流配電、監控單元、蓄電池等為主要組成部分的架構;功率變換模式也將維持現有的高頻開關模式,暫時不會出現類似從線性電源到開關電源的階躍性的變化。

功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩定,一定程度制約了整機系統的功率密度的提高比率。

更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術、通信電源技術的成熟,以及各通信直流電源設備廠家在可靠性研究上大力投入,通信直流電源產品可靠性呈不斷提高的趨勢。

按照TRIZ理論(“創造性解決問題的理論”的俄語縮略語)描述的技術系統發展進化規律,一般而言,技術的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術,開關電源技術基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內,通信直流電源產品將進入一個緩慢發展的階段,直至有一天,一種新的電源變換技術出現,通信直流電源產品就會再出現一個階躍性的發展,就像開關穩壓技術替代線性穩壓技術,給電源帶來了革命性的變化。

(三)通信用蓄電池技術研究的新進展

通信用蓄電池作為通信系統后備的能源供應手段,其研制、生產和應用技術一直備受世界各國通信行業的重視。隨著科技的發展和技術的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經進入商用化階段。這些新的蓄電池,由于其材料、結構和技術上的先進性,在性能上具有傳統的VRLA電池無可比擬的優越性。

1.釩電池(VanadiumRedoxBattery)。釩電池(VRB)是一種電解值可以流動的電池,目前正在逐步進入商用化階段。

2.燃料電池。燃料電池是一種化學電池,也是一種新型的發電裝置,它所需的化學原料由外部供給,如氫氧燃料電池,只要外部供給氫和氧,經過內部電極、催化劑和堿性電解液的作用,就能產生0.9V電壓的直流電能,同時產生大量的熱能.

3.電源監控系統的發展。隨著互聯網技術應用日益普及和信息處理技術的不斷發展,通信系統從以前的單機或小局域系統逐漸發展至大局域網系統或廣域網系統,大量人力、物力被投入到網絡設備的管理和維護工作上。不過通信設施所處環境越來越復雜,人煙稀少、交通不便都會增大維護的難度,這對電源設備的監控管理提出了新的需求,保護通信互聯網終端的電源設備必須具備數據處理和網絡通信能力。此時,數字化技術就表現出了傳統模擬技術無法實現的優勢,數字化技術的發展逐步表現出傳統模擬技術無法實現的優勢.

4.通信電源的環保要求。環保問題,一方面的指標是通信電源的電流諧波要符合要求,降低電源的輸入諧波,不但可以改善電源對電網的負載特性,減少給電網帶來嚴重污染的情況,還可減少對其他網絡設備的諧波干擾。另一個重要方面,是材料的可循環利用和環境的無污染,這方面需要產品滿足WEEE/ROHS指令。

在通信電源開發、生產早期,人們主要集中研究電源的輸出特性,較少考慮到電源的輸入特性。例如:傳統的在線式電源輸入AC/DC部分通常采用橋式整流濾波電路,其輸入電流呈脈沖狀,導通角約為π/3,波峰因數大于純電阻負載的1.4倍。這些諧波電流大的電源給電網帶來了嚴重的污染,使電網波形失真,實際負荷能力降低,對于三相四線制的電網來說,還很有可能因中性線電流過大而出現不安全隱患。

參考文獻:

[1]朱雄世,《通信電源的現狀與展望》.

[2]《淺析全球通信電源技術發展趨勢》.

[3]《通信直流電源發展趨勢》.

[4]孫向陽、張樹治,《國外通信用蓄電池技術研究的新進展》.

[5]《通信電源技術發展趨勢及標準研究方向》.

[6]曾瑛,《淺談通信電源》.

[7]王改娥、李克民,《談我國通信電源的發展方向》.

[8]王改娥、李克民,《我國通信電源的發展回顧與展望》.

[9]侯福平,《UPS系統在通信網絡中使用的特點及要求》.

[10]《全球通信電源技術發展呈現五大趨勢》.

[11]《通信電源需求現狀分析》.

[12]唐勇偉,《通信電源技術的發展》.

第2篇

關鍵詞:DSP變頻;電源設計;變頻電源

中圖分類號:TN86 文獻標識碼:A 文章編號:1009-2374(2014)08-0048-03

1 概述

1.1 問題的提出

電動鑿巖機是建筑、水利、采礦等行業的重要設備。相對于傳統的鑿巖設備,電動鑿巖機所具有的突出優點是節省能源,其電能利用率高達50%~60%,而常用氣動鑿巖機僅為10%,此外,電動鑿巖機還有噪聲低、工作面空氣新鮮、無廢氣污染等優點,極大的改善了勞動條件。但目前使用的電動鑿巖機也有明顯缺點:對同樣硬度的巖石,它的轉速只有氣動鑿巖機的50%~60%。目前大多數電動設備直接使用交流工頻電源(50HZ),不能隨著工作環境(巖石硬度、鉆孔孔徑、深度)改變輸出轉矩、轉速,因此工作效率較低。為此,本文采用德州儀器公司的TMS320C2407DSP處理器設計一種新型的5KVA單相正弦波變頻電源,通過輸出可程控的交流電壓,改變電動設備的輸出轉矩和轉速。進而提高工作效率,改善電動設備的工作性能。

1.2 國內外研究現狀

變頻技術是國內外研究的一個熱點。其原因一是由于市場需求。近年來,隨著自動化技術程度的發展成熟和能源短缺問題日益突出,變頻技術越來越得到重視,并廣泛地應用。二是功率器件的發展。近年來各種高電壓、大電流的功率器件的生產以及并聯、串聯技術的發展應用,使先進變頻器的生產成為現實。三是現代控制理論和集成電子技術的發展。矢量控制、模糊控制等新的控制理論及神經網絡技術為高性能的變頻器研制提供了理論基礎,而高速微處理器以及專用集成電路技術的快速發展,為實現變頻器高精度、多功能提供了硬件平臺。

目前國外的變頻技術研究,以法、意、德、日等國領先。在大功率變頻調速方面,法國的阿爾斯通公司、意大利的ABB公司分別研制出單機容量達數萬千瓦的電氣傳動設備。在中功率變頻調速技術方面,德國的西門子公司研制出的SimovertA電流型晶閘管變頻調速設備和SimovertPGTOPWM變頻調速設備,己實現全數字化控制;在小功率交流變頻調速技術方面,日本的富士BJT變頻器、IGBT變頻器已形成系列產品,其控制系統也已實現全數字化。

國內研究方面,從總體上看我國變頻調速的技術水平較國際先進水平有較大差距。目前在大功率交——交、無換向器電機等變頻技術方面,國內雖有部分單位可研制生產,但在數字化程度及系統可靠性等方面還有待改進。對程控變頻電源的理論和實踐研究取得的成績,可查主要有:王小薇、程永華對于基于DSP雙環控制的逆變電源設計研究;余功軍、鐘彥儒、楊耕對IGBT變頻器死區時間的補償策略研究;程永華、楊成林、徐德鴻對于基于DSP變壓變頻電源設計研究;程曙、徐國卿、許哲雄對SPWM逆變器死區效應分析研究;趙勇對基于IGBT大功率變頻電源的研究;李鋒對基于DSP的SPWM變壓變頻電源的研究等。

同時由于目前我國采用的半導體功率器件和DSP等器件依然嚴重依賴進口,使得變頻器的制造成本居高不下,無法形成有競爭力的產業,也是影響我國變頻技術發展的一個主要原因。

2 基于DSP的新型單相正弦波變頻電源設計

2.1 設計思路

本文以美國德州儀器公司的TMS320C2407DSP處理器為核心設計了一種新型的5KVA單相正弦波變頻電源。通過輸出不同頻率、電壓的電源信號,對異步電機的轉速、轉矩進行控制。從而實現了電動鑿巖設備針對不同巖體提高鉆孔效率的目的。該不安品電源的硬件部分主要由主電路、保護電路、控制電路等部分組成。主電路包括整流、濾波、逆變器、驅動電路等;保護電路包括過壓欠壓保護、限流啟動、IPM故障保護、過流保護等;控制電路則主要包括DSP控制電路、PWM信號發生電路、A/D、D/A轉換電路等。在軟件方面,考慮到SVPWM控制算法比較適合于數字控制系統,本文編制了基于SVPWM控制算法的控制軟件。經過工作現場試驗結果表明,該系統可以在30—300Hz范圍內均勻調速,在不同的負載情況下,具有較好的穩定性和較強的抗干擾能力。

2.2 硬件系統結構

本文設計變頻電源的硬件系統以Tl公司的TMS320LF2407A型DSP為控制芯片,由主電路、保護電路、控制電路等組成,其原理結構圖如圖1。

圖1 硬件系統原理結構圖

其中主電路包括整流、濾波、逆變器驅動電路等組成。其工作原理是把單相交流電通過整流模塊變為直流電,整流后的脈動電壓再經過濾波電容平滑后成為穩定的直流電壓。再由逆變電路對該直流電壓進行斬波,形成電壓和頻率可調的單相交流電提供給異步電機。由于IPM是IGBT的功率集成電路,需要有專門的驅動電路,本文采用調壓電路把電壓抬高到15伏來進行驅動。系統保護電路包括過壓、欠壓保護、限流啟動、IPM故障保護、過流保護等。控制電路包括DSP控制電路、PWM信號發生電路、A/D、D/A轉換電路等。

2.3 整流和濾波電路

整流和濾波電路屬于主電路的一部分,其結構圖如圖2所示。工作時,220V的交流電源經過四個二極管的全波整流,變為直流,其中電解電容C1為整流濾波電容,電阻R1為放電電阻,在斷電情況下為C1提供放電回路,同時也為逆變器負載和直流電源之間的無功功率提供緩沖。

圖2 整流和濾波電路

2.4 逆變電路設計

(a)逆變電路結構原理圖(b)輸出方波信號波形圖

圖3

本文即采用的是電壓型逆變電路。因為本文設計變頻電源主要應用在電動鑿巖設備上的。所以我們采用的是單相全橋逆變電路。圖3為單相電壓橋式逆變電路的結構原理圖及輸出波形圖。全控型開關器件T1和T4構成一對橋臂,T2和T3構成一對橋臂,T1和T4同時通、斷;T2和T3同時通、斷。T1(T4)與T2(T3)的驅動信號互補,即T1和T4有驅動信號時,T2和T3無驅動信號,反之亦然,兩對橋臂各交替導通180°。從而得到需要的變頻電壓信號。

由于本變頻電源主要應用電動鑿巖設備方面,即一般情況下均是在在阻感負載下工作。因此在0≤θ≤ωt期間,T1和T4有驅動信號,由于電流i0為負值,T1和T4不導通,D1、D4導通起負載電流續流作用,u0=+Ud。θ≤ωt≤π期間,i0為正值,T1和T4才導通。π≤ωt≤π+θ期間,T2和T3有驅動信號,由于電流i0為負值,T2、T3不導通,D2、D3導通起負載電流續流作用,u0=-Ud。π+θ≤ωt≤2π期間,T2和T3才導通

2.5 電平轉換設計

由于DSPTMS320LF2407是低功耗芯片,必須采用3.3V供電,與驅動主電路的電平不匹配,易引起事故,損壞芯片。故本實用新型設計中包含了電平轉換設計。本文采用的驅動芯片M57959L本身具備隔離輸入作用,因此在電平轉換設計中不必要增設隔離電路。本實用新型采用I/O直接輸出轉換設計。

圖4 采用M57959L的電平轉換驅動電路

2.6 軟件部分設計

控制算法的軟件化為交流調速系統控制算法的選擇、復用提供了方便。本設計基于TMS320LF2407A事件管理器,采用DSP自帶的匯編語言編寫軟件CCS進行編寫,系統的軟件設計可簡單分為兩個部分:一個是系統的初始化模塊,另一個是控制算法模塊。其中初始化只在系統上電時執行一次,而控制算法模塊包括SVPWM的生成,速度反饋信號的采樣和處理等。系統的整在程序初始化之后進入主循環程序,DSP產生SVPWM使電機開始運行。其調用的頻率與PWM的輸出頻率一致。系統軟件流程圖如圖5所示。

3 應用實驗及展望

本文所設計制作的5KVA單相正弦波變頻電源,可輸出30~300HZ交流電壓。所制作的樣品在湘西同力機械公司、武陵電化總廠金屬包裝廠經過多次實驗表明,應用本文設計變頻電源控制異步電動機工作時,在不同頻率、不同負載情況下,輸出轉速和轉矩可基本實現實時控制,具有較好的工作穩定性和抗干擾能力。

未來,將從兩方面對本設計進行改進,一是將改進硬件結構設計,逐步增大電源容量;二是改進軟件算法設計,實現變頻電源的最優實時控制。

圖5 系統軟件流程圖

參考文獻

[1] 王小薇,程永華.基于DSP雙環控制的逆變電源設

計[J].電力電子技術,2004,38(3).

[2] 馮勇,葉斌.IGBT逆變器吸收電路的仿真分析與

參數選擇[J].電力機車技術,1999,(2):12-14.

[3] 余功軍,鐘彥儒,楊耕一種IGBT變頻器死區時間

的補償策略[J].電力電子技術,1997,(4):7-9.

[4] 程永華,楊成林,徐德鴻.基于DSP變壓變頻電源

設計[J].電力電子技術,2003,37(5).

[5] 程曙,徐國卿,許哲雄.SPWM逆變器死區效應分

析[J].電力系統及其自動化學報,2002,14

(2):39-42.

[6] 陳國呈.電壓型PWM逆變器的波形失真及其補償

方法[J].冶金自動化,1990,14(3):11-14.

[7] 余功軍,鐘彥儒,楊耕一種IGBT變頻器死區時間

的補償策略[J].電力電子技術,1997(4):7-9.

[8] 劉陵順,尚安利,顧文錦.SPWM逆變器死區效

應的研究[J].電機與控制學報,2001,5(4):

237-241.

[9] 趙勇.基于IGBT大功率變頻電源的研制[D].山東

大學碩士論文,2006.

[10] 王鵬.基于單片機控制的車載高頻鏈逆變電源的

研制[D].河北工業大學碩士論文,2007.

[11] 李鋒.基于DSP的SPWM變壓變頻電源的設計

[D].湖南大學碩士論文,2008.

第3篇

關鍵詞:機電一體化,發展方向,技術應用

 

機電一體化技術是面向應用的跨學科的技術,它是機械技術、微電子技術、信息技術和控制技術等有機融合、相互滲透的結果。

1機電一體化技術的發展狀況 1.1 數控機床的問世,為機電一體化技術的發展寫下了歷史的第一頁; 1.2 微電子技術為機電一體化技術的發展帶來了勃勃生機; 1.3 可編程序控制器、'電力電子'等的發展為機電一體化技術的發展提供了堅強基礎; 1.4 激光技術、模糊技術、信息技術等新技術使機電一體化技術的發展躍上新臺階.

2機電一體化技術發展方向

機電一體化是機械、微電子、控制、計算機、信息處理等多學科的交叉融合,其發展和進步有賴于相關技術的進步與發展,其主要發展方向有數字化、智能化、模塊化、網絡化、人性化、微型化、集成化、帶源化和綠色化。 2.1 數字化

微控制器及其發展奠定了機電產品數字化的基礎;而計算機網絡的迅速崛起,為數字化設計與制造鋪平了道路。數字化要求機電一體化產品的軟件具有高可靠性、易操作性、可維護性、自診斷能力以及友好人機界面。數字化的實現將便于遠程操作、診斷和修復。 2.2 智能化

即要求機電產品有一定的智能,使它具有類似人的邏輯思考、判斷推理、自主決策等能力。論文參考網。隨著模糊控制、神經網絡、灰色理論 、小波理論、混沌與分岔等人工智能技術的進步與發展,為機電一體化技術發展開辟了廣闊天地。 2.3 模塊化

由于機電一體化產品種類和生產廠家繁多,研制和開發具有標準機械接口、動力接口、環境接口的機電一體化產品單元模塊是一項復雜而有前途的工作。在產品開發設計時,可以利用這些標準模塊化單元迅速開發出新的產品。 2.4 網絡化

由于網絡的普及,基于網絡的各種遠程控制和監視技術方興未艾。而遠程控制的終端設備本身就是機電一體化產品,現場總線和局域網技術使家用電器網絡化成為可能,利用家庭網絡把各種家用電器連接成以計算機為中心的計算機集成家用電器系統,使人們在家里可充分享受各種高技術帶來的好處,因此,機電一體化產品無疑應朝網絡化方向發展。 2.5 人性化

機電一體化產品的最終使用對象是人,如何給機電一體化產品賦予人的智能、情感和人性顯得愈來愈重要,機電一體化產品除了完善的性能外,還要求在色彩、造型等方面與環境相協調,使用這些產品,對人來說還是一種藝術享受。

2.6 微型化

微型化是精細加工技術發展的必然,也是提高效率的需要。微機電系統(Micro ElectronicMechanical Systems,簡稱MEMS)是指可批量制作的,集微型機構、微型傳感器、微型執行器以及信號處理和控制電路,直至接口、通信和電源等于一體的微型器件或系統。

2.7 集成化

集成化既包含各種技術的相互滲透、相互融合和各種產品不同結構的優化與復合,又包含在生產過程中同時處理加工、裝配、檢測、管理等多種工序。為了實現多品種、小批量生產的自動化與高效率,應使系統具有更廣泛的柔性。首先可將系統分解為若干層次,使系統功能分散,并使各部分協調而又安全地運轉,然后再通過軟、硬件將各個層次有機地聯系起來,使其性能最優、功能最強。 2.8 帶源化

是指機電一體化產品自身帶有能源,如太陽能電池、燃料電池和大容量電池。由于在許多場合無法使用電能,因而對于運動的機電一體化產品,自帶動力源具有獨特的好處。論文參考網。帶源化是機電一體化產品的發展方向之一。 2.9 綠色化

綠色產品是指低能耗、低材耗、低污染、舒適、協調而可再生利用的產品。在其設計、制造、使用和銷毀時應符合環保和人類健康的要求,機電一體化產品的綠色化主要是指在其使用時不污染生態環境,產品壽命結束時,產品可分解和再生利用。

3 典型的機電一體化產品 機電一體化產品分系統(整機)和基礎元、部件兩大類。典型的機電一體化系統有:數控機床、機器人、汽車電子化產品、智能化儀器儀表、電子排版印刷系統、CAD/CAM系統等。典型的機電一體化基礎元、部件有:電力電子器件及裝置、可編程序控制器、模糊控制器、微型電機、傳感器、專用集成電路、伺服機構等。論文參考網。這些典型的機電一體化產品的技術現狀、發展趨勢、市場前景分析從略。

4 機電一體化的技術應用

在重工業企業中,機電一體化系統是以微處理機為核心,把微機、工控機、數據通訊、顯示裝置、儀表等技術有機的結合起來,采用組裝合并方式,為實現工程大系統的綜合一體化創造有力條件,增強系統控制精度、質量和可靠性。

4.1 智能化控制技術(IC)

由于重工業具有大型化、高速化和連續化的特點,傳統的控制技術遇到了難以克服的困難,因此非常有必要采用智能控制技術。智能控制技術主要包括專家系統、模糊控制和神經 網絡等,智能控制技術廣泛應用于重工業企業的產品設計、生產、控制、設備與產品質量診斷等各個方面,如高爐控制系統、電爐和連鑄車間、軋鋼系統、冷連軋等。 4.2 分布式控制系統(DCS)

分布式控制系統采用一臺中央計算機指揮若干臺面向控制的現場測控計算機和智能控制單元。分布式控制系統可以是兩級的、三級的或更多級的。利用計算機對生產過程進行集中監視、操作、管理和分散控制。隨著測控技術的發展,分布式控制系統的功能將越來越多。不僅可以實現生產過程控制,而且還可以實現在線最優化、生產過程實時調度、生產計劃統計管理功能,成為一種測、控、管一體化的綜合系統。DCS具有特點控制功能多樣化、操作簡便、系統可以擴展、維護方便、可靠性高等特點。DCS是監視集中控制分散,故障影響面小,而且系統具有連鎖保護功能,采用了系統故障人工手動控制操作措施,使系統可靠性高。分布式控制系統與集中型控制系統相比,其功能更強,具有更高的安全性,是當前大型機電一體化系統的主要潮流。 4.3 開放式控制系統(OCS)

開放控制系統(Open Control System)是目前計算機技術發展所引出的新的結構體系概念。“開放”意味著對一種標準的信息交換規程的共識和支持,按此標準設計的系統,可以實現不同廠家產品的兼容和互換,且資源共享。開放控制系統通過工業通信網絡使各種控制設備、管理計算機互聯,實現控制與經營、管理、決策的集成,通過現場總線使現場儀表與控制室的控制設備互聯,實現測量與控制一體化。 4.4 計算機集成制造系統(CIMS)

重工業企業的CIMS是將人與生產經營、生產管理以及過程控制連成一體,用以實現從原料進廠,生產加工到產品發貨的整個生產過程全局和過程一體化控制。目前重工業企業已基本實現了過程自動化,但這種“自動化孤島”式的單機自動化缺乏信息資源的共享和生產過程的統一管理,難以適應現代重工業生產的要求。未來重工業企業競爭的焦點是多品種、小批量生產,質優價廉,及時交貨。為了提高生產率、節能降耗、減少人員及現有庫存,加速資金周轉,實現生產、經營、管理整體優化,關鍵就是加強管理,獲取必須的經濟效益,提高了企業的競爭力。

4.5 現場總線技術(FBT)

現場總線技術(Fied Bus Technology)是連接設置在現場的儀表與設置在控制室內的控制設備之間的數字式、雙向、多站通信鏈路。采用現場總線技術取代現行的信號傳輸技術(如4~20mA,DC直流傳輸)就能使更多的信息在智能化現場儀表裝置與更高一級的控制系統之間在共同的通信媒體上進行雙向傳送。通過現場總線連接可省去66%或更多的現場信號連接導線。現場總線的引入導致DCS的變革和新一代圍繞開放自動化系統的現場總線化儀表,如智能變送器、智能執行器和現場就地控制站等的發展。 4.6 交流傳動技術

傳動技術在重工業中起著至關重要的作用。隨著電力、電子、技術和微電子技術的發展,交流調速技術的發展非常迅速。由于交流傳動的優越性,電氣傳動技術在不久的將來由交流傳動全面取代直流傳動,數字技術的發展,使復雜的矢量控制技術實用化得以實現,交流調速系統的調速性能已達到和超過直流調速水平。現在無論大容量電機或中小容量電機都可以使用,同步電機或異步電機實現可逆平滑調速。交流傳動系統在軋鋼生產中一出現就受到用戶的歡迎,應用不斷擴大。

綜上,我們不難發現機電一體化技術在現在的社會生產中占據了越來越多的行業和領域,并且隨著科學技術的發展,各種技術相互融合的趨勢將越來越明顯,機電一體化技術的廣闊發展前景也將越來越光明。

【參考文獻】

1李建勇. 機電一體化技術[M].北京:科學技術出版社,2004.

2張華. 機電一體化技術應用[M]. 北京:電子工業出版社,2002.

3芮延年. 機電一體化系統設計[M]. 北京:機械工業出版社,2004.

4唐懷斌. 工業控制的進展與趨勢 [J].自動化與儀器儀表,1996(4)

5蔡慶蘇,孟梅芳; 機電一體化技術及其應用研究 [J];科技創業月刊;2005(3)

第4篇

關鍵詞:智能配變電;監控系統;監控終端;設計應用

中圖分類號:TM421 文獻標識碼:A

0引言

配變電監控系統采用先進的32位ARM技術和新型電能測量集成芯片ADE7758,簡化了配變電安全監控系統的設計難度,可以做到全電子或真正的固體化、靜止化,利于提高性能,降低成本。本論文主要針對配變電監控體系的開發設計進行研究,以期實現配電網的智能監控與管理,并和同行分享。

1配變電安全盆控系統的硬件沒計

根據實際要求,采用模塊化設計,將系統劃分為電源模塊、信號采集、數據處理和存儲、通信模塊、人機接口模塊和系統調試模塊,具體內容參見本章后續小節。各功能模塊有機的結合,則構成了一個系統,總體框圖如下圖所示:

電源模塊分為常用供電電源模塊、電源監控模塊和備用電源模塊兩部分。當常用供電電源突然下降時,電源監控模塊檢測一個低壓值,此時CPU立即啟動控制信號,啟用備用電源,為CPU和FLASH模塊提供電源,保障將CPU里面的數據全部轉移到FLASH中。

信號采集模塊采樣新型高精度3相電能測量集成芯片ADE7758將電流互感器(CT)和電壓互感器(VT)輸出的模擬信號轉換為數字信號并計算出三相電壓、電流值,有功功率,無功功率,視在功率,有功電能,無功電能,功率因素,以及過零檢測。

數據處理和存儲主要是擴展FLASH和SRAM電路。通訊模塊分為串口通訊(RS232和RS485)、無線模塊、GPRS模塊和USB模塊。人機接口電路分為鍵盤輸入指示燈和LCD顯示。

1.1ARM技術特點。ARM技術具有很高的性能和功效,容易被廠商接受。同時,合作伙伴的增多,可獲得更多的第三方工具、制造和軟件支持,又使整個系統成本降低,使產品進入市場的時間加快,從而具有更大的競爭優勢。

1.2ARM內核。傳統的CISC結構有其固有的缺點,即隨著計算機技術的發展而不斷引入新的復雜的指令集,為支持這些新增的指令,計算機的體系結構會越來越復雜,然而,在CISC指令集的各種指令中,其使用頻率卻相差懸殊,大約有20%的指令會被反復使用,占整個程序代碼的80%。而余下的8既的指令卻不經常使用,在程序設計中只占2既,顯然,這種結構是不太合理的。基于以上的不合理性,1979年美國加州大學伯克利分校提出了租RISC的概念,RISC并非只是簡單地去減少指令,而是把著眼點放在了如何使計算機的結構更加簡單合理地提高運算速度上。RISC體系的一般特點有:

1)體積小、低功耗、低成本、高性能;2)絕大多數操作都在寄存器中進行,通過Load/Store的體系結構在內存和寄存器之間傳遞數據;3)尋址方式簡單;4)采用固定長度的指令格式;5)具有大量的寄存器;6)支持Thumb16位/ARM32位雙指令集能很好的兼容8位/16位器件。

采用先進的32位ARM處理器LPC2214和新型高精度3相電能測量集成芯片ADE7758,研究出一種全周波交流采樣電路和信號處理電路。系統不僅擁有更高的工作頻率和數據處理能力,為諧波測量和FFT運算提供了保證,而且降低了設計難度,彌補了傳統設計方案中的不足。系統不僅能夠抵抗高強度的電磁干擾,而且為配變電安全監控提供了保障。

2配變電安全監控系統的軟件設計

系統軟件由匯編語言和C語言編寫。匯編語言編寫ARM啟動代碼,在芯片上電或復位時,完成系統初始化。系統初始化后,最重要的一個操作就是檢測系統供電電源是否正常。如果系統供電電源不正常,而進行運作,會導致非常嚴重的后果,不過,系統此時會立即啟動備用電源,將當前數據、日數據、月數據都保存到FLASH里面。如果數據都保存完后,還未恢復正常供電,則關閉備用電源,系統自動光機。若系統恢復正常供電,則進入初始化程序,置供電正常標志。此時,其他程序都是以秒間隔為標志有序的循環運行。

配變電實時監控。主站可以通過GPRS或無線模塊向配變電安全監控系統發出“請求1類數據”命令,實時監控配變電安全監控系統或電力系統當前運行狀況。以請求“FN25_當前三相及總有”無功功率、功率因數,三相電壓、電流、零序電流”為例,敘述“請求1類數據”方法。

當前三相及總有無功功率、功率因數,三相電壓、電流、零序電流菜單欄中的“負控命令”下拉選項中,選擇“請求1類數據”。彈出“測試1類數據”窗口,“選擇”欄內的信息類標識PN的下拉列表中,選擇“FN25_當前三相及總有”無功功率、功率因數,三相電壓、電流、零序電流”;信息點標識PN的下拉列表中,選擇“PNI測量點號1”。然后點擊”召喚數據”按鍵,請求配變電安全監控系統的相關信息。在”收發幀顯示”框中,將顯示“發送”和“接收”報文具體內容;在“響應顯示”框中,將顯示當前三相及總有無功功率、功率因數,三相電壓、電流、零序電流相關信息。

3通信規約設計

主站和終端設備之間的遠程通訊媒介原則上可以采用多種方式,本系統支持電話、載波、光纖、無線電臺、以及目前流行的SMS短信、GPRS技術,用戶可以根據其實際情況和當地網絡情況綜合考慮、選擇。考慮到本系統針對對象是地域分布廣、數量大的專用和一些公用配電網,綜合考慮電磁干擾、抗雷擊、實時性、可靠性、施工方便、投資成本以及通訊發展走向等因素,使用公用無線信道的 SMS、GPRS 通信方式無疑是一個比較好的選擇。下面簡單分析基于無線 GPRS 技術的配變電監控終端通信方式。

當開關監控單元 FTU 上的 GPRS 模塊上電之后,即通過移動公司的網絡連接到了互連網上,可以將其看作互連網上的一個客戶端,當服務器端的 IP 地址及端口號確定之后,該FTU 終端即可連接上服務器,而在互連網上端到端的連接采用 Socket 套接字通信是比較成熟的方式。

socket 實質上提供了進程通信的端點。進程通信之前,雙方首先必須各自創建一個端點,否則是沒有辦法建立聯系并相互通信的。正如打電話之前,雙方必須各自擁有一臺電話機一樣。在網間網內部,每一個 socket 用一個半相關描述:一個完整的 socket 有一個本地唯一的 socket 號,由操作系統分配。

在配電網自動化系統的 GPRS 通信中,應用程序的網絡通信歸根結底是利用相同的通信協議來完成信息的傳輸,應用程序和 Winsock 都工作在 Windows 的用戶模式下,操作系統僅僅通過 Winsock 是不能完成網絡間的通信,還需要底層的支持,而套接字仿真器(套接字核心模式驅動程序)和傳輸驅動程序接口是負責操作系統核心態環境下的網絡通信,起到了 Winsock 和傳輸協議之間的通信橋梁作用,由于我們傳輸的對象多為配電系統的數據量文件,因此需要對系統的發送緩沖區和接收緩沖區作相應的設定,以保障大數據量的文件數據的發送和接收,從而實現在窄帶環境下依然實現配電網自動化系統的相關數據的 GPRS 傳輸通信。

4總結

配變電安全監控系統具備計量電力參數、遠程自動化實時抄表、電力異常信息自動報警、電能質量檢測、用電檢查和配電房溫濕度調節等功能。系統能監控電力運行狀況,自動進行無功補償,減小供電線路中的有功損耗,降低變送電設備、供電線路、用電設備發熱量,使得供電局工作人員迅速采取合理的措施,防止事故發生和遏止事故進一步擴大,防止災害的發生。

參考文獻:

[1]王斌,配電自動化系統終端的技術發展歷程、現狀和趨勢[J].電氣應用,2005,24(7):14一16.

[2]韋文祥,基于ARM和Uc/OS一11的遠程配變監控終端的研究與設計[碩士學位論文][D]長沙:湖南大學,2006.

第5篇

[Abstract] With the progress of economics, cars in the city are more and more with the urbanization. What is the development trend of the future about the car is really needed to be studied and discussed.

關鍵字:汽車電器;組成;現狀與發展

[Keywords] vehicle electrical ; composition ; status and development

中圖分類號:F407.471 文獻標識碼: A

1、汽車電器的主要組成部分

1.1電源系統

電源系統包括蓄電池、發電機、調節器。其中發電機為主電源,發電機正常工作時,由發電機向全車用電設備供電,同時給蓄電池充電。調節器的作用是使發電機的輸出電壓保持恒定。蓄電池為可逆的直流電源。在汽車上使用最廣泛的是起動用鉛蓄電池,它與發動機并聯,向用電設備供電。

發電機是汽車電系的主要電源,它在正常工作時,對除起動機以外的所有的用電設備供電,并向蓄電池充電,以補充蓄電池在使用中所消耗的電能。發電機可以說是歷史上獨一無二的最偉大的電學發明,現在汽車使用的發電機都是交流發電機。在汽車上,發電機既是用電器的電源,又是蓄電池的充電裝置。為了滿足用電器和蓄電池的要求對發電機的供電電壓和電流變化范圍也有一定的限制。直流發電機所匹配的調節器一般都是由電壓調節器、電流限制器、截斷繼電器三部分組成。

1.2啟動系統

美國物理學家亨利于1831年發現自感現象后,發表了介紹電動機的論文。根據發電機原理,做成與發電機原理相反的電動機(馬達),這就是起動機。可以說,發電機技術進步的同時就有了起動機。起動機是用來起動發動機的,它主要由電機部分、傳動機構(或稱嚙合機構)和起動開關三部分組成。

1.3照明系統

包括汽車內、外各種照明燈及其控制裝置。用來保證夜間行車安全。主要有前照燈、霧燈、尾燈、制動燈、棚燈、電喇叭、轉向燈閃光器等。1898年“哥倫比亞”號電動汽車首先把電用于前燈和尾燈。最初的前大燈不能調光,所以汽車在會車時有些晃眼,后來采用了附加光度調節器,并由美國異航燈具公司推廣應用。這種前大燈可以在垂直方向上下移動,但駕駛員必須下車搬動夾具裝置,非常不方便。1925年,導航燈具公司推廣了雙絲燈泡,遠光和近光的調節通過開關來控制,才把這個問題徹底解決。

1.4儀表系統

包括各種電器儀表(電流表、充電指示燈或電壓表、機油壓力表、溫度表、燃油表、車速及里程表、發動機轉速表等)。用來顯示發動機和汽車行駛中有關裝置的工作狀況。 最早的汽車儀表與信號是由一排外視器組成的,隨后出現的儀表是精確計時儀。汽車儀表的作用是幫助駕駛員隨時掌握汽車主要部分的工作情況,及時發現和排除可能出現的故障和不安全因素,以保證良好的行使狀態。汽車常用儀表有電流表、水溫表、發動機機油壓力表、燃油油量表及車速里程表,有的汽車還有發動機轉速表和制動系貯氣筒氣壓表等。 目前,汽車儀表總的發展趨勢正在向簡潔明了的模擬式儀表和模仿模擬式儀表方向發展。

1.5輔助電器系統

包括電動刮水器、空調器、低溫啟動預熱裝置、收錄機、點煙器、玻璃升降器等。 隨著汽車輔助工業的發展和現代化技術在汽車方面的應用,現代汽車裝用的輔助電氣設備很多,除了汽車用音響設備,通訊器材和汽車電視等服務性裝置外,都是一些與汽車本身使用性能有關的電氣設備。如電動刮水器,電動洗窗器,電動玻璃升降器,暖風通風裝置、電動座位移動機構,發動機冷卻系電動風扇、電動燃料泵,冷氣壓縮機用電磁離合等等。

2、汽車電器系統的特點

①低壓——汽油車多采用12V,柴油車多采用24V。②直流——主要從蓄電池的充電來考慮。③單線制——單線制即從電源到用電設備使用一根導線連接,而另一根導線則用汽車車體或發動機機體的金屬部分代替。單線制可節省導線,使線路簡化、清晰,便于安裝與檢修。④負極搭鐵——將蓄電池的負極與車體相連接,稱為負極搭鐵。

3、汽車傳感器的發展趨勢

根據現代汽車的發展趨勢,主要闡述一下傳感器總的發展趨勢,它

的趨勢是向多功能化、集成化、智能化、微型化方向發展。

3.1發現新現象

利用物理現象、化學反應和生物效應等是各種傳感器的基本原理,所以發現新現象與新效應是現代傳感器發展的重要基礎。

3.2開發新材料

功能材料是發展傳感器技術的另一個重要基礎。由于材料科學的進步,在制造各種材料時,人們可以任意控制他的成份,從而可以設計與制造出各種用于傳感器的功能材料。例如控制半導體氧化物的成份,可以制造出各種氣體傳感器;光導纖維用于傳感器是傳感器功能材料的一個重大發現;有機材料作為功能材料,正引起國內外汽車電子化專家的極大關注。

3.3采用新工藝

傳感器的敏感元件性能除了由其功能材料決定外,還與其加工工藝有關。隨著半導體、陶瓷等新型材料用于傳感器敏感元件,許多現代先進制造技術也引入汽車傳感器制造技術,例如集成技術,微細加工技術,薄膜技術等,能制作出性能穩定、可靠性高、體積小、重量輕的微型化敏感元件。近年來從半導體集成電路技術發展而來的微電子機械系統(MEMS)技術日漸成熟,利用這一技術可以制作各種能敏感和檢測力學量、磁學量、熱學量、化學量和生物量的微型傳感器,這些傳感器的體積和能耗小,可實現許多全新的功能,這些特點使得他們非常適合于汽車方面的應用。

3.4研究智能式傳感器

智能傳感器是一種帶微型計算機兼有檢測、判斷、信息處理等功能的傳感器。與傳統傳感器相比,他具有很多特點。例如,他可以確定傳感器工作狀態,對測量資料進行修正,以便減少環境因素如溫度引起的誤差;用軟件解決硬件難以解決的問題;世界各國都在車用傳感器硬件的基礎上,努力用軟件來解決汽車電氣干擾大、環境差(溫度高、溫度梯度大、污染厲害等)等問題造成的對汽車參數測量的影響。而且智能式傳感器精度高、量程覆蓋范圍大、輸出信號大、信噪比高、抗干擾性能好,有的還帶有自檢功能。不少汽車大公司在該方面進行研制與開發,并取得了成就和應用。

第6篇

[關鍵詞]技術現狀 工作原理 運行維護

中圖分類號:TH715.193 文獻標識碼:A 文章編號:1009-914X(2015)26-0237-01

1.電動機技術發展及現狀

電機是利用電磁感應原理工作的機械。隨著生產的發展而發展的,反過來,電機的發展又促進了社會生產力的不斷提高。從19世紀末期起,電動機就逐漸代替蒸汽機作為拖動生產機械的原動機,一個多世紀以來,雖然電機的基本結構變化不大,但是電機的類型增加了許多,在運行性能,經濟指標等方面也都有了很大的改進和提高,而且隨著自動控制系統和計算機技術的發展,在一般旋轉電機的理論基礎上又發展出許多種類的控制電機,控制電機具有高可靠性p好精確度p快速響應的特點,已成為電機學科的一個獨立分支。

未來電動機將會沿著單位功率體積更小、機電能量轉換效率更高、控制更靈活的方向繼續發展。一批"巨無霸’電機、一批"光怪陸奇"電機將同時展現在世人眼前。

2.三相異步電動機的工作原理

三相異步電動機轉動的基本工作原理是:

(1)三相對稱繞組中通過三相對稱電流產生圓形旋轉磁場。

(2)轉子導體切割旋轉磁場感應電動勢和電流;

(3)轉子載流導體在磁場中受到電磁力的作用,從而形成電磁轉距,驅使電動機轉子轉動。

3.電動機啟動時應該注意的問題

(1)接通電源后,如果電動機不轉,應立即切斷電源,絕不能遲疑等待,更不能帶電檢查電動機發故障,否則將會燒毀電動機和發生危險。

(2)啟動時應注意觀察電動機、傳動裝置、負載機械的工作情況,以及線路上的電流表和電壓表的指示,若有異常現象,應立即斷電檢查,待故障排除后,載行啟動。

(3)利用手動補償器或手動星三角啟動器啟動電動機時,特別要注意操作順序。一定要先將手柄推到啟動位置,待電動機轉速穩定后再拉到運轉位置,防止誤操作造成設備和人身事故。

(4)同一線路上的電動機不應同時啟動,一般應由大到小逐臺啟動以免多太電動機同時啟動,線路上電流太大。電壓降低過多,造成電動機啟動困難引起線路故障或使開關設備跳閘。

(5)啟動時,若電動機的旋轉方向反了,應立即切斷電源,將三相電源線中的任意兩相互換一下位置,即可改變電動機轉向。

4.電動機運行中的注意事項

4.1注意電動機的振動、響聲和氣味

電動機正常運行時,應平穩、輕快、無異常氣味和響聲。若發生劇烈振動,噪音和焦臭氣味,應停車進行檢查修理。

4.2注意傳動裝置的檢查

電動機運行時要隨時注意查看皮帶輪或聯軸器有無松動,傳動皮帶是否有過緊、過松的現象等,如果有,應停車上緊或進行調整。

4.3注意軸承的工作情況

電動機運行中應注意軸承聲響和發熱情況。若軸承聲音不正常或過熱,應檢查情況是否良好和有無磨損。

4.4注意交流電動機的滑環或直流電動機的換向器火花

電動機運行中,電刷與換向器或滑環之間難免出現火花。如果所發生的火花大于某一規定限度,尤其是出現放電性的紅色電弧火花時,將產生破壞作用,必須及時加以糾正。

5.電動機的定期檢查和保養

為了保證電動機正常工作,除了按操作規程正確使用,運行過程中注意監視和維護外還應進行定期檢查和保養。間隔時間可根據電動機的類型、使用環境決定。主要檢查和保養項目如下:

(1)及時清除電動機機座外部的灰塵、油泥,如使用環境灰塵較多,最好每天清掃一次。

(2)經常檢查接線板螺絲是否松動或燒傷。

(3)定期測量電動機的絕緣電阻,若使用環境比較潮濕更應經常測量。

(4)定期用煤油清洗軸承并更換新油(一般半年更換一次),換油時不應上滿,一般占油腔的1/2~1/3,否則,容易發熱或甩出,油要從一面加人,可以把沒有清洗干凈的雜質,從另一面擠出來。

(5)定期檢查啟動設備,看觸頭和接線有無燒傷,氧化,接觸是否良好等。

(6)絕緣情況的檢查。絕緣材料的絕緣能力因干燥程度不同而異,所以保持電動機繞組的干燥是非常重要的。電動機工作環境潮濕、工作間有腐蝕性氣體等因素的存在,都會破壞電動機的絕緣。最常見的是繞組接地故障即絕緣損壞,使帶電部分與機殼等不應帶電的金屬部分相碰,發生這種故障,不僅影響電動機正常工作。還會危及人身安全。所以電動機在使用中,應經常檢查絕緣電阻,還要注意查看電動機機殼接地是否可靠。

(7)除了按上述幾項內容對電動機定期維護外,運行一年后要大修一次。大修的目的在于,對電動機進行一次徹底、全面的檢查、維護,增補電動機缺少、磨損的元件,徹底清除電動機內外的灰塵、污物,檢查絕緣情況,清洗軸承并檢查其磨損情況。

6.對電機軸電流的分析及防范

在電動機運行過程中,如果在兩軸承端或電機轉軸與軸承間有軸電流的存在,那么對于電機軸承的使用壽命將會大大縮短。輕微的可運行上千小時,嚴重的甚至只能運行幾小時,給現場安全生產帶來極大的影響。同時由于軸承損壞及更換帶來的直接和間接經濟損失也不可小計。

6.1軸電壓和軸電流的產生

軸電壓是電動機兩軸承端或電機轉軸與軸承間所產生的電壓,其產生原因一般有以下幾種:

(1)磁不平衡產生軸電壓

電動機由于扇形沖片、硅鋼片等疊裝因素,再加上鐵芯槽、通風孔等的存在,造成在磁路中存在不平衡的磁阻,并且在轉軸的周圍有交變磁通切割轉軸,在軸的兩端感應出軸電壓。

(2)逆變供電產生軸電壓

電動機采用逆變供電運行時,由于電源電壓含有較高次的諧波分量,在電壓脈沖分量的作用下,定子繞組線圈端部、接線部分、轉軸之間產生電磁感應,使轉軸的電位發生變化,從而產生軸電壓。

(3)靜電感應產生軸電壓

在電動機運行的現場周圍有較多的高壓設備,在強電場的作用下,在轉軸的兩端感應出軸電壓。外部電源的介入產生軸電壓由于運行現場接線比較繁雜,尤其大電機保護、測量元件接線較多,哪一根帶電線頭搭接在轉軸上,便會產生軸電壓。

(4)其他原因

如靜電荷的積累、測溫元件絕緣破損等因素都有可能導致軸電壓的產生。軸電壓建立起來后,一旦在轉軸及機座、殼體間形成通路,就產生軸電流。

6.2軸電流的防范

針對軸電流形成的根本原因,一般在現場采用如下防范措施:

(1)在軸端安裝接地碳刷,以降低軸電位,使接地碳刷可靠接地,并且與轉軸可靠接觸,保證轉軸電位為零電位,以此消除軸電流。

(2)為防止磁不平衡等原因產生軸電流, 往往在非軸伸端的軸承座和軸承支架處加絕緣隔板,以切斷軸電流的回路。

(3)為了避免其他電動機附件導線絕緣破損造成的軸電流,往往要求檢修運行人員細致檢查并加強導線或墊片絕緣,以消除不必要的軸電流隱患。

一般通過以上處理,大多電動機的軸電流微乎其微,已對電動機構不成實質上危害。現場實踐證明,經上述方式處理后實際使用壽命可由原幾十個小時提高到上萬小時,效果比較明顯,尤其對高壓電動機軸電流的防范效果好,對安全生產具有積極作用。

7.總結

由于電動機的發展及廣泛的應用,它的使用、保養和維護工作也越來越重要。但是在日常使用過程中如何去維護好,其影響可見一斑。本文著重從電動機的技術發展及現狀、工作原理、運行維護進行了初略的探討和分析,通過此篇論文的寫作,我對電機的了解又加深了許多,同時也感受到作為一名電氣技術員肩上的重擔。

參考文獻

[1]孔祥東群主編.控制工程基礎[M].武漢:機械工業出版社,2008

[2]李洋孫晉范翠香.電動機使用與維修[M].北京:人民郵電出版社,2007

[3]許曉峰.電機及拖動[M].北京:高等教育出版社,2007

第7篇

當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。

1.電力電子技術的發展

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

1.1整流器時代

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2.現代電力電子的應用領域

2.1計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。

現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。

3.3數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4綠色化

電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。

現代電力電子技術是開關電源技術發展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現,現代電源技術將在實際需要的推動下快速發展。在傳統的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態,從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優良的開關電源。

第8篇

關鍵詞:數字圖書館 信息安全 防護策略

一、相關概念

(一)信息安全

信息安全是指信息網絡的硬件、軟件及其系統中的數據受到保護,不因偶然或者惡意的原因而遭到破壞、更改、泄露,系統連續可靠正常地運行,使信息服務不中斷。也可以說,所謂信息安全,一般是指在信息采集、存儲、處理、傳播和運用過程中,信息的自由性、秘密性、完整性、共享性等都能得到良好保護的一種狀態。

(二)數字圖書館

數字圖書館,就是具有內容豐富的數字化信息資源、利用先進的計算機技術、網絡通信技術、數字化技術,能為用戶提供集成化的信息服務和知識服務,滿足用戶深層次的信息需求的服務機構,它是網絡環境下圖書館進入高級發展階段的新的形態。所以,數字圖書館信息安全是指其各系統不因偶然或者惡意的原因而遭到破壞、更改、泄露、丟失,確保信息資源的自由性、秘密性、完整性、準確性、共享性,為讀者提供正常的檢索和查閱服務。

二、數字圖書館信息安全存在的問題

(一)環境問題

數字圖書館的機房是各類信息的中樞,放置有各類服務器、磁盤陣列、交換機、防火墻、UPS 不間斷電源、機房空調、除濕機等重要設備,機房設計與施工的優劣直接關系到機房內整個信息系統是否能穩定可靠地運行,是否能保證各類信息通訊暢通無阻。所以機房環境要能防水、防火、防震、防雷、防盜,對溫度、濕度、潔凈度、電磁場強度、噪音干擾都有很高的要求,相應的就要配備機房溫濕度監控系統、機房溫度報警器、浸水報警器、通風系統等來保障機房的安全。因而機房環境存在很多安全隱患。

(二)硬件問題

數字圖書館各類服務器、磁盤陣列、交換機、防火墻、UPS 不間斷電源、空調、除濕機等設備都是7×24小時運行,工作負荷過大,其使用壽命縮短,容易造成硬件故障,導致部分設備損壞,或者是工作人員在操作過程中導致的設備損壞等。如常見的有磁盤、電源等。

(三)軟件問題

軟件包括系統軟件和各種應用軟件。這些軟件在研發過程中,由于編程語言的局限性,設計時結構體系本身的缺陷,開發人員能力所限及疏忽等原因,這些軟件本身就存在許多安全漏洞。黑客就可以利用這些漏洞,繞過安全機制,進行網絡攻擊,破壞和竊取數據資料,甚至破壞整個系統,導致數據丟失和系統癱瘓。

(四)人為問題

目前,國內數字圖書館系統管理員大多數都是高校畢業后就到圖書館工作,沒有受過系統、科學的實戰技術和安全管理培訓,專業技術不精,缺乏專業的信息安全素養,在工作過程中容易操作失誤,面對各種復雜的安全問題常常束手無策,對安全防范容易疏忽等。

其次,數字圖書館信息安全管理制度不健全,缺乏嚴格、細致、有效的安全管理規定,重技術,輕管理,崗位職責不明確,安全管理滯后于技術發展,導致事故頻繁發生。

(五)病毒及黑客問題

計算機病毒是指編制或者在計算機程序中插入的破壞計算機功能或者破壞數據,影響計算機使用并且能夠自我復制的一組計算機指令或者程序代碼,具有破壞性、復制性、隱蔽性和傳染性。數字圖書館的資源依賴于計算機技術、網絡通信技術和數字技術,為網上成千上萬的用戶共享,用戶可遠程訪問、獲得所需的珍貴資料。因此,也為計算機病毒的傳播提供了便利條件。

隨著計算機技術和網絡通信技術的發展,黑客攻擊活動日益猖獗,數字化圖書館的開放式、共享性及網絡化環境,加上軟件自身存在的安全漏洞,系統管理員的疏于防范等,成為黑客屢屢攻擊得手的原因。

三、數字圖書館信息安全防護策略

(一)制定嚴格有效的安全管理制度

在數字圖書館信息安全的建設過程中,技術與制度二者是相輔相成的,技術是一種硬手段,是基礎;制度是一種規范性的軟手段,是保障。

制定嚴格、細致、有效的安全管理制度,明確崗位職責,規范工作行為,健全信息安全監督審查機制,對工作人員進行常態化安全教育培訓,增強制度執行力。只有這樣,才能確保安全管理制度不流于形式,信息安全監督審查落到實處。

(二)良好的機房環境

機房的建設要按國家現行有關標準、規范實施,機房應鋪設抗靜電活動地板,地板支架要接地,預留排水口。必須滿足計算機等各種微機電子設備和工作人員對溫度、濕度、潔凈度、電磁場強度、噪音干擾、防水、防火、防震、防雷、防盜、防漏和接地等的要求。要配齊供配電系統、浸水報警器、應急照明、UPS不間斷電源系統、空調系統、新風換氣系統、氣體式滅火器、消防報警系統、防盜報警系統、防雷接地系統等。

(三)防火墻技術

防火墻指的是在內部網和外部網之間、專用網與公共網之間構造的一個由軟件和硬件設備組合而成的保護屏障。它能實現內網與外網、內網與內網之間風險的隔離,從而限制了局部重點或敏感網絡安全問題對全局網絡造成的影響,是抵御黑客入侵和防止未授權訪問的有效手段之一。

(四)入侵檢測或流量分析技術

入侵檢測系統(IDS)通過對網絡或系統中的不同關鍵點收集信息,分析信息,主動發現網絡或系統中是否有違反安全策略的行為和遭到攻擊的跡象,發出警報或采取防御措施。入侵檢測系統是防火墻的重要補充,是積極主動的安全防御防御技術,提供對內部攻擊、外部攻擊和誤操作的實時保護。

(五)數據加密及身份認證技術

數據加密就是對需要保護的信息經過加密鑰匙(Encryption key)及加密函數轉換,實現信息隱藏,從而起到保護信息安全。常采用的方法有鏈路加密、節點加密和端到端加密。身份認證就是對網絡中各種應用的相關權限進行鑒別,阻止非法用戶訪問系統。

(六)數據備份技術

數據備份是容災的基礎,是為防止無法預料的結果導致數據丟失,而將全部或部分數據集合從應用主機的硬盤或陣列復制到其它的存儲介質的過程。數據備份包括系統和數據備份,常見的備份策略有:完全備份、增量備份和差分備份。按操作方式又可分為離線備份和在線備份。圖書館應按照數據的價值劃分類別,對不同類別的數據進行不同等級的備份。

四、結束語

數字圖書館信息安全是其向讀者提供穩定、持續服務的重要保證,隨著計算機技術、網絡通信技術的飛速發展,信息安全問題越來越突出,各種病毒泛濫,網絡攻擊常態化等。因此,圖書館工作人員必須提升自身技術水平,提高安全防范意識,健全安全保障機制,才能為讀者提供一個安全、穩定的學習環境。

參考文獻:

[1]郝玉潔.信息安全概論[M].成都:電子科技大學出版社.2007:2.

[2]孟朝輝.論數字圖書館的知識管理[D].[碩士學位論文].湖南:湘潭大學,管理學院,2003.

第9篇

【三峽電力職業學院】4月1日,三峽電力職業學院與中國葛洲壩集團股份有限公司簽訂人才培養協議,雙方決定由該公司預定水利水電建筑工程、工程測量技術、工程起重機械運用與維護、發電廠及電力系統、電力系統繼電保護與自動化、電力設備運行與維護、工程造價、機電一體化技術、建筑工程技術等專業學生300人。

【河海大學】4月12日,河海大學舉行“新能源發電與智能電網學科創新引智基地”建設啟動儀式暨學術報告會。引智基地以中國能源學會副理事長、國家杰出青年科學基金獲得者、江蘇省“333高層次人才培養工程”人選、河海大學副校長鞠平教授為負責人,匯聚英國皇家工程院院士麥克•斯德林爵士等10名國際大師、國外著名學者和河海大學10名專家教授組成學術團隊,圍繞新能源發電與智能電網設計、建設、運行與調度中的關鍵技術問題開展深入的國際合作研究。

【武漢大學】4月12日至13日,第八屆中國高校電力電子與電力傳動學術年會(SPEED 2014)暨第八屆電力櫻花論壇在武漢大學召開,論壇圍繞電力電子技術發展的前沿問題進行了充分的交流。本屆年會組委會主任、武漢大學電氣工程學院副院長查曉明等國內外學者分別作了專題報告,內容涉及電力電子建模與控制、電機及其控制、電力電子新技術等多個方面。此次年會有國內外40余所高校200多名學者參加,投稿約200篇學術論文。

【華北電力大學】4月29日,華北電力大學與中國電科院聯合成立電力系統繼電保護聯合研究中心。中心選取“分布式電源保護控制策略及故障特性研究”“特高壓高補償度串補系統繼電保護關鍵技術研究”等5個項目作為首批啟動的聯合研發項目。

【華北電力大學】日前,根據北京市科委的《關于認定2014年北京市國際科技合作基地的通知》,華北電力大學新增4個北京市國際科技合作基地:智能電網安全北京市國際科技合作基地、高效聚光化合物太陽能電池北京市國際科技合作基地、火力發電過程節能與清潔運行北京市國際科技合作基地、能源與環境系統優化及工程應用北京市國際科技合作基地。

【山東大學】4月29日,山東大學電氣工程學院與國家電網許繼集團有限公司共同組建聯合創新中心戰略合作框架協議簽約儀式舉行。“中心”將在新能源發電、智能變電站、配電與微網、用電與能效、電動汽車充換電和電力電子技術領域開展深入研究,形成相關科技成果轉化機制和模式,開展聯合人才培養和技術服務工作。

第10篇

論文關鍵詞:無功補償技術;作用;現狀;發展趨勢

無功功率補償裝置的主要作用是:提高負載和系統的功率因數,減少設備的功率損耗,穩定電壓,提高供電質量。在長距離輸電中,提高系統輸電穩定性和輸電能力,平衡三相負載的有功和無功功率等。

一、無功功率補償的作用

1、改善功率因數及相應地減少電費

根據國家水電部,物價局頒布的“功率因數調整電費辦法”規定三種功率因數標準值,相應減少電費:

(1)高壓供電的用電單位,功率因數為0.9以上。

(2)低壓供電的用電單位,功率因數為0.85以上。

(3)低壓供電的農業用戶,功率因數為0.8以上。

2、降低系統的能耗

功率因數的提高,能減少線路損耗及變壓器的銅耗。

設R為線路電阻,ΔP1為原線路損耗,ΔP2為功率因數提高后線路損耗,則線損減少

ΔP=ΔP1-ΔP2=3R(I12-I22)(1)

比原來損失減少的百分數為

(ΔP/ΔP1)×100%=1-(I2/I1)2.100%(2)

式中,I1=P/(3U1cosφ1),I2=P/(3U2cosφ2)補償后,由于功率因數提高,U2>U1,為分析方便,可認為U2≈U1,則

θ=[1-(cosφ1/cosφ2)2].100%(3)

當功率因數從0.8提高至0.9時,通過上式計算,可求得有功損耗降低21%左右。在輸送功率P=3UIcosφ不變情況下,cosφ提高,I相對降低,設I1為補償前變壓器的電流,I2為補償后變壓器的電流,銅耗分別為ΔP1,ΔP2;銅耗與電流的平方成正比,即

ΔP1/ΔP2=I22/I12

由于P1=P2,認為U2≈U1時,即

I2/I1=cosφ1/cosφ2

可知,功率因數從0.8提高至0.9時,銅耗相當于原來的80%。

3、減少了線路的壓降

由于線路傳送電流小了,系統的線路電壓損失相應減小,有利于系統電壓的穩定(輕載時要防止超前電流使電壓上升過高),有利于大電機起動。

二、我國電力系統無功補償的現狀

近年來,隨著國民經濟的跨越式發展,電力行業也得到快速發展,特別是電網建設,負荷的快速增長對無功的需求也大幅上升,也使電網中無功功率不平衡,導致無功功率大量的存在。目前,我國電力系統無功功率補償主要采用以下幾種方式:

1.同步調相機:同步調相機屬于早期無功補償裝置的典型代表,它雖能進行動態補償,但響應慢,運行維護復雜,多為高壓側集中補償,目前很少使用。

2.并補裝置:并聯電容器是無功補償領域中應用最廣泛的無功補償裝置,但電容補償只能補償固定的無功,盡管采用電容分組投切相比固定電容器補償方式能更有效適應負載無功的動態變化,但是電容器補償方式仍然屬于一種有級的無功調節,不能實現無功的平滑無級的調節。

3.并聯電抗器:目前所用電抗器的容量是固定的,除吸收系統容性負荷外,用以抑制過電壓。

以上幾種補償方式在運行中取得一定的效果,但在實際的無功補償工作中也存在一些問題:

1.補償方式問題:目前很多電力部門對無功補償的出發點就地補償,不向系統倒送無功,即只注意補償功率因素,不是立足于降低系統網的損耗。

2.諧波問題:電容器具有一定的抗諧波能力,但諧波含量過大時會對電容器的壽命產生影響,甚至造成電容器的過早損壞;并且由于電容器對諧波有放大作用,因而使系統的諧波干擾更嚴重。

3.無功倒送問題:無功倒送在電力系統中是不允許的,特別是在負荷低谷時,無功倒送造成電壓偏高。

4.電壓調節方式的補償設備帶來的問題:有些無功補償設備是依據電壓來確定無功投切量的,線路電壓的波動主要由無功量變化引起的,但線路的電壓水平是由系統情況決定的,這就可能出現無功過補或欠補。

三、無功功率補償技術的發展趨勢

根據上述我國無功功率補償的情況及出現的問題,今后我國的無功功率補償的發展方向是:無功功率動態自動無級調節,諧波抑制。

1.基于智能控制策略的晶閘管投切電容器(TSC)補償裝置

將微處理器用于TSC,可以完成復雜的檢測和控制任務,從而使動態補償無功功率成為可能。基于智能控制策略的TSC補償裝置的核心部件是控制器,由它完成無功功率(功率因數)的測量及分析,進而控制無觸點開關的投切,同時還可完成過壓、欠壓、功率因數等參數的存貯和顯示。TSC補償裝置操作無涌流,跟蹤響應快,并具有各種保護功能,值得大力推廣。

2.靜止無功發生器(SVG)

靜止無功發生器(SVG)又稱靜止同步補償器(STATCOM),是采用GTO構成的自換相變流器,通過電壓電源逆變技術提供超前和滯后的無功,進行無功補償,若控制方法得當,SVG在補償無功功率的同時還可以對諧波電流進行補償。其調節速度更快且不需要大容量的電容、電感等儲能元件,諧波含量小,同容量占地面積小,在系統欠壓條件下無功調節能力強,是新一代無功補償裝置的代表,有很大的發展前途。

3.電力有源濾波器

電力有源濾波器是運用瞬時濾波形成技術,對包含諧波和無功分量的非正弦波進行“矯正”。因此,電力有源濾波器有很快的響應速度,對變化的諧波和無功功率都能實施動態補償,并且其補償特性受電網阻抗參數影響較小。

電力有源濾波器的交流電路分為電壓型和電流型。目前實用的裝置90%以上為電壓型。從與補償對象的連接方式來看,電力有源濾波器可分為并聯型和串聯型。并聯型中有單獨使用、LC濾波器混合使用及注入電路方式,目前并聯型占實用裝置的大多數。

4.綜合潮流控制器

第11篇

上世紀50年代末晶閘管在美國問世,標志著電力電子技術就此誕生。第一代電力電子器件主要是可控硅整流器(SCR),我國70年代將其列為節能技術在全國推廣。然而,SCR畢竟是一種只能控制其導通而不能控制關斷的半控型開關器件,在交流傳動和變頻電源的應用中受到限制。70年代以后陸續發明的功率晶體管(GTR)、門極可關斷晶閘管(GTO)、功率MOS場效應管(PowerMOSFET)、絕緣柵晶體管(IGBT)、靜電感應晶體管(SIT)和靜電感應晶閘管(SITH)等,它們的共同特點是既控制其導通,又能控制其關斷,是全控型開關器件,由于不需要換流電路,故體積、重量較之SCR有大幅度下降。當前,IGBT以其優異的特性已成為主流器件,容量大的GTO也有一定地位[1][2][3]。

許多國家都在努力開發大容量器件,國外已生產6000V的IGBT。IEGT(injectionenhancedgatethyristor)是一種將IGBT和GTO的優點結合起來的新型器件,已有1000A/4500V的樣品問世。IGCT(integratedgateeommutatedthyristor)在GTO基礎上采用緩沖層和透明發射極,它開通時相當于晶閘管,關斷時相當于晶體管,從而有效地協調了通態電壓和阻斷電壓的矛盾,工作頻率可達幾千赫茲[2][3]。瑞士ABB公司已經推出的IGCT可達4500一6000V,3000一3500A。MCT因進展不大而引退而IGCT的發展使其在電力電子器件的新格局中占有重要的地位。與發達國家相比,我國在器件制造方面比在應用方面有更大的差距。高功率溝柵結構IGBT模塊、IEGT、MOS門控晶閘管、高壓砷化稼高頻整流二極管、碳化硅(SIC)等新型功率器件在國外有了最新發展。可以相信,采用GaAs、SiC等新型半導體材料制成功率器件,實現人們對“理想器件”的追求,將是21世紀電力電子器件發展的主要趨勢。

高可靠性的電力電子積木(PEBB)和集成電力電子模塊(IPEM)是近期美國電力電子技術發展新熱點。GTO和IGCT,IGCT和高壓IGBT等電力電子新器件之間的激烈競爭,必將為21世紀世界電力電子新技術和變頻技術的發展帶來更多的機遇和挑戰。

二、變頻技術的發展過程

變頻技術是應交流電機無級調速的需要而誕生的。電力電子器件的更新促使電力變換

技術的不斷發展。起初,變頻技術只局限于變頻不能變壓。20世紀70年代開始,脈寬調制變壓變頻(PWM-VVVF)調速研究引起了人們的高度重視。20世紀80年代,作為變頻技術核心的PWM模式優化問題吸引著人們的濃厚興趣,并得出諸多優化模式,如:調制波縱向分割法、同相位載波PWM技術、移相載波PWM技術、載波調制波同時移相PWM技術等。

VVVF變頻器的控制相對簡單,機械特性硬度也較好,能夠滿足一般傳動的平滑調速要求,已在產業的各個領域得到廣泛應用。但是,這種控制方式在低頻時,由于輸出電壓較小,受定子電阻壓降的影響比較顯著,故造成輸出最大轉矩減小。

矢量控制變頻調速的做法是:將異步電動機在三相坐標系下的定子交流電流Ia、Ib、Ic通過三相——二相變換,等效成同步旋轉坐標系下的直流電流Iml、Itl,然后模仿直流電動機的控制方法,求得直流電動機的控制量,經過相應的坐標反變換,實現對異步電動機的控制。

直接轉矩控制直接在定子坐標系下分析交流電動機的數學模型,控制電動機的磁鏈和轉矩。它不需要將交流電動機化成等效直流電動機,因而省去了矢量旋轉變換中的許多復雜計算;它不需要模仿直流電動機的控制,也不需要為解耦而簡化交流電動機的數學模型。

VVVF變頻、矢量控制變頻、直接轉矩控制變頻都是交—直—交變頻中的一種。其共同缺點是輸入功率因數低,諧波電流大,直流回路需要大的儲能電容,再生能量又不能反饋回電網,即不能進行四象限運行。為此,矩陣式交—交變頻應運而生。

三、變頻技術與家用電器

20世紀70年代,家用電器開始逐步變頻化,出現了電磁烹任器、變頻照明器具、變頻空調、變頻微波爐、變頻電冰箱、IH(感應加熱)飯堡、變頻洗衣機等[4]。

20世紀末期期,家用電器則依托變頻技術,主要瞄準高功能和省電。

首先是電冰箱,由于它處于全天工作,采用變頻制冷后,壓縮機始終處在低速運行狀態,可以徹底消除因壓縮機起動引的噪聲,節能效果更加明顯。其次,空調器使用變頻后,擴大了壓縮機的工作范圍,不需要壓縮機在斷續狀態下運行就可實現冷、暖控制,達到降低電力消耗,消除由于溫度變動而引起的不適感。近年來,新式的變頻冷藏庫不但耗電量減少、實現靜音化,而且利用高速運行能實現快速冷凍。

在洗衣機方面,過去使用變頻實現可變速控制,提高洗凈性能,新流行的洗衣機除了節能和靜音化外,還在確保衣物柔和洗滌等方面推出新的控制內容;電磁烹任器利用高頻感應加熱使鍋子直接發熱,沒有燃氣和電加熱的熾熱部分,因此不但安全,還大幅度提高加熱效率,其工作頻率高于聽覺之上,從而消除了飯鍋振動引起的噪聲。

四、電力電子裝置帶來的危害及對策

電力電子裝置中的相控整流和不可控二極管整流使輸入電流波形發生嚴重畸變,不但大大降低了系統的功率因數,還引起了嚴重的諧波污染。

另外,硬件電路中電壓和電流的急劇變化,使得電力電子器件承受很大的電應力,并給周圍的電氣設備及電波造成嚴重的電磁干擾(EM1),而且情況日趨嚴重。許多國家都已制定了限制諧波的國家標準,國際電氣電子工程師協會(IEEE)、國際電工委員會(IEC)和國際大電網會議(CIGRE)紛紛推出了自己的諧波標準。我國政府也制定了限制諧波的有關規定[5]。

(一)諧波與電磁干擾的對策

1、諧波抑制

為了抑制電力電子裝置產生的諧波,一種方法是進行諧波補償,即設置諧波補償裝置,使輸入電流成為正弦波[3]。

傳統的諧波補償裝置是采用IC調諧濾波器,它既可補償諧波,又可補償無功功率。其缺點是,補償特性受電網阻抗和運行狀態影響,易和系統發生并聯諧振,導致諧波放大,使LC濾波器過載甚至燒毀。此外,它只能補償固定頻率的諧波,效果也不夠理想。

電力電子器件普及應用之后,運用有源電力濾波器進行諧波補償成為重要方向。其原理是,從補償對象中檢測出諧波電流,然后產生一個與該諧波電流大小相等極性相反的補償電流,從而使電網電流只含有基波分量。這種濾波器能對頻率和幅值都變化的諧波進行跟蹤補償,且補償特性不受電網阻抗的影響。

大容量變流器減少諧波的主要方法是采用多重化技術:將多個方波疊加以消除次數較低的諧波,從而得到接近正弦的階梯波。重數越多,波形越接近正弦,但電路結構越復雜。小容量變流器為了實現低諧波和高功率因數,一般采用二極管整流加PWM斬波,常稱之為功率因數校正(PEC)。典型的電路有升壓型、降壓型、升降壓型等。

2、電磁干擾抑制

解決EMI的措施是克服開關器件導通和關斷時出現過大的電流上升率di/dt和電壓上升率du/dt,目前比較引入注目的是零電流開關(ZCS)和零電壓開關(ZVS)電路。方法是:

(1)開關器件上串聯電感,這樣可抑制開關器件導通時的di/dt,使器件上不存在電壓、電流重疊區,減少了正關損耗;

(2)開關器件上并聯電容,當器件關斷后抑制du/dt上升,器件上不存在電壓、電流重疊區,減少了開關損耗;

(3)器件上反并聯二極管,在二極管導通期間,開關器件呈零電壓、零電流狀態,此時驅動器件導通或關斷能實現ZVS、ZCS動作。

目前較常用的軟件開關技術有部分諧振PWM和無損耗緩沖電路。

(二)功率因數補償

早期的方法是采用同步調相機,它是專門用來產生無功功率的同步電機,利用過勵磁和欠勵磁分別發出不同大小的容性或感性無功功率。然而,由于它是旋轉電機,噪聲和損耗都較大,運行維護也復雜,響應速度慢。因此,在很多情況下已無法適應快速無功功率補償的要求。

另一種方法是采用飽和電抗器的靜止無功補償裝置。它具有靜止型和響應速度快的優點,但由于其鐵心需磁化到飽和狀態,損耗和噪聲都很大,而且存在非線性電路的一些特殊問題,又不能分相調節以補償負載的不平衡,所以未能占據靜止無功補償裝置的主流。

隨著電力電子技術的不斷發展,使用SCR、GTO和IGBT等的靜止無功補償裝置得到了長足發展,其中以靜止無功發生器最為優越。它具有調節速度快、運行范圍寬的優點,而且在采取多重化、多電平或PWM技術等措施后,可大大減少補償電流中諧波含量。更重要的是,靜止無功發生器使用的抗器和電容元件小,大大縮小裝置的體積和成本。靜止無功發生器代表著動態無功補償裝置的發展方向。

五、結束語

我們相信,電力電子技術將成為21世紀重要的支柱技術之一,變頻技術在電力電子技術領域中占有重要的地位,近年來在中壓變頻調速和電力牽引領域中的發展引人注目。隨著全球經濟一體化及我國加人世界貿易組織,我國電力電子技術及變頻技術產業將出現前所未有的發展機遇。

參考文獻:

[1]周明寶.電力電子技術[M].北京:機制工業出版社,1985.

[2]陳堅.電力電子學-電力電子變換和控制技術.北京:高等教育出版社,2002.

[3]王兆安黃俊.電力電子技術[M].北京:機械工業出版社,2003.

[4]陳國呈,周勤利.變頻技術研究[J].上海大學自動化學院學報,1995(6):23-26.

第12篇

關鍵詞:焊接機器人 機器人 管道焊接

中圖分類號:TP242 文獻標識碼:A 文章編號:

1.國內外工業機器人的發展

機器人技術作為先進制造技術的典型代表和主要技術手段,它在提升企業技術水平、穩定產品質量、提高生產效率、實現文明生產等方面具有重大作用。大工業革命曾使人淪落為機器的奴隸,而機器人的誕生和廣泛推廣應用又重新使人類恢復了尊嚴。目前機器人技術已成為世界各發達國家競相發展的高技術,其發展水平已成為衡量一個國家技術發展程度的重要標志之一。

美國是最早出現工業機器人的國家,1954年美國的G.C.戴沃爾發表了“通用重復型機器人”的專利論文,第一次提出“工業機器人”和“示教再現”的概念。1959年美國Unimation公司推出第一臺工業機器人。1967年日本從美國引進Unimate和Ver satran等類型的工業機器人以后,結合國情,面向中小企業,采取一系列鼓勵使用工業機器人的措施,率先在汽車制造業的噴涂、焊接、裝配等重要工序中得到應用。并以此為契機,向其它產業滲透。

在我國,人工焊接仍然占據焊接作業的主導地位,人工施焊時焊接工人經常會受到心理、生理條件變化以及周圍環境的干擾。在惡劣的焊接條件下,操作工人容易疲勞,難以較長時間保持焊接工作穩定性和一致性,而焊接機器人則工作狀態穩定,不會疲勞。因而,選擇應用焊接機器人對產品進行焊接可以實現用穩定一致的工藝條件確保產品焊接強度和滿足產品各項性能指標的要求,同時滿足焊縫成型良好的產品外觀質量要求。隨著國外及國內對工業機器人在焊接方面的研究應用,我國也開始了焊接機器人的研究應用。在引進國外技術的基礎上,中國于20世紀70年代末開始研究焊接機器人。1985年哈爾濱工業大學研制成功我國第一臺HY-1型焊接機器人。1989年北京機床研究所和華南理工大學聯合為天津自行車二廠研制出了焊接自行車前三腳架的TJR-G1型弧焊機器人,為“二汽”研制出用于焊接東風牌汽車系列駕駛室及車身的點焊機器人。上海交通大學研制的“上海1號”、“上海2號”示教型機器人也都具有弧焊和點焊的功能[3]。20世紀節式機器人。1999年北京機械工業自動化研究所機器人中心研制的AW-600型弧焊機器人工作站,采用PC工控機控制和PMAC可編程多軸控制系統,于1999年4月通過了國家機械工業局的鑒定。1999年7月15日,國家863計劃智能機器人主題專家驗收通過了由“一汽”集團、哈爾濱工業大學和沈陽自動化研究所聯合開發的H-100A型點焊機器人。由此可見,我們國內的焊接機器人已開始走向實用化階段。

2. 焊接機器人技術及現狀

焊接機器人的應用,不但改善了勞動環境、減輕勞動強度、提高升產效率,更主要原因是焊接機器人工作的穩定性和焊接產品質量的一致性,這對于保證批量生產的產品焊接質量至關重要。

通常情況下,焊接機器人系統由焊接機器人、機器人焊機、變位機以及回轉工作臺等周邊裝置、焊接夾具、安全裝置等組成。焊接機器人的工作對象幾乎和手工焊接一樣廣泛,可以焊接低碳鋼、不銹鋼、鋁材、銅材等。焊接材料的厚度可以從零點幾毫米到幾毫米、十幾毫米、直至幾十毫米。并且能夠靈活調整焊槍姿態,實現對工件的最佳焊接。

隨著機器人控制技術的發展和焊接機器人應用范圍的擴大,尤其為適應現代產品更新換代快和多品種小批量的需要,要求焊接機器人和變位機,弧焊電源等周邊設備實現柔性化集成。這有助于減少輔助時間,是提高生產效率的關鍵之一。例如,在球形或橢圓形工件的徑向焊縫或復雜形狀工件的周邊的卷邊接頭等狀態下焊接時,為了使整條焊縫在焊接時都能使焊池水平或稍微下坡狀態,焊接時變位機必須不斷地變換工件位置和姿態。即變位機在焊接過程中不是靜止不動的,而是要做相應的協調的運動。弧焊電源和工裝夾具等也要在機器人統一控制下作相應的協調運動,才能保證整個系統的高效率,高質量的工作。

3. 焊接機器人的發展及前景

隨著我國國民經濟的發展和工業自動化水平的不斷提高,特別是加入WTO,許多生產企業為提高產品質量和生產效率,爭取盡快和國際市場接軌,在市場競爭中爭取主動權,對在生產中采用機器人的要求越來越強烈,對應用機器人的呼聲也越來越高,為焊接機器人市場的快速增長提供了一個良好的機會。機器人的需求量在逐年增加,中國近幾年機器人市場將會一個大的跨越。

種種跡象表明,今后幾年中國的焊接機器人市場將是技術不斷提高,市場迅速擴大,應用工程項目市場競爭激烈的局面。預計今后的幾年內,國內企業對點焊、弧焊機器人的需求量將以 30% 以上的速度增長。從機器人技術發展趨勢看,焊接機器人不斷向智能化方向發展,機器人的感覺功能將實現多傳感器信息的融合,控制系統從示教、離線編程向模糊控制發展,實現生產系統中機器人的群體協調和集成控制,從而達到更高的可靠性和安全性。從應用技術市場角度分析,性能和價格以及技術服務的質量將仍然是決定用戶做出正確選擇的主要因素。隨著國內機器人公司自主品牌的性能價格比進一步提高,短期內將可以達到與國外產品抗衡的能力。從機器人應用范圍來看,焊接機器人的應用在傳統制造業領域的需求持續增長同時不斷向其它行業擴散。國內外眾多機器人廠家激烈競爭的結果將促進我國工業制造技術自動化水平的不斷提高,應用焊接機器人的企業在高技術、高質量、低成本條件下獲得高速發展。

4 .焊接機器人在生產中應用的主要經驗和問題

弧焊機器人在實際生產中的應用及產業化仍有如下的關鍵問題等待進一步研究解決:

(1)弧焊機器人系統的柔性化集成及優化,減少輔助時間,提高生產效率;

(2)新型機器人用弧焊逆變電源結構和性能的優化及電流波形控制,使熔滴實現最佳過渡,減少飛濺;

(3)弧焊過程實用傳感技術,快速準確地提取弧焊過程的特征信息,實現焊縫自動跟蹤;

(4)實用化的弧焊動態過程和焊接質量的實時智能控制技術;

(5)弧焊機器人工程應用和產業化中的技術成果轉化。

5 .結論

工業機器人技術的研究、發展與應用,有力地推動了世界工業技術的進步。特別是焊接機器人在高質高效的焊接生產中,發揮了極其重要的作用。我國焊接機器人技術的研究應用雖然較晚,但借鑒于國外的成熟技術,得到了迅速的發展。近年來,我國在焊縫跟蹤、智能控制、信息傳感、周邊設備及機器人專用電源等方面進行了大量的研究與應用,取得了許多優秀的成果。隨著智能機器人技術和人工智能理論的進一步發展,焊接機器人系統還有許多值得我們認真研究的問題,特別是多智能體系統、基于PC的控制器和模糊神經網絡等方面將是研究的熱點問題。

參考文獻

亚洲精品无码久久久久久久性色,淫荡人妻一区二区三区在线视频,精品一级片高清无码,国产一区中文字幕无码
亚洲欧美国产制服动漫 | 日韩在线不卡免费视频 | 亚洲午夜福利片在线 | 日韩欧美有亚洲日韩中文字幕在线 | 亚洲一区二区视频 | 日韩欧美中文字幕一本 |